学科分类
/ 2
32 个结果
  • 简介:采用全自动控制往复喷射成形工艺制备工业规格7055铝合金锭坯,研究热挤压工艺喷射成形7055铝合金显微组织力学性能影响。采用电子背散射衍射技术经不同热挤压后7055铝合金织构进行研究。结果表明,喷射沉积锭坯组织为轴状晶粒,均匀细小(30~50gm),基体中不存在枝晶型偏析。由于喷射沉积工艺本身特点,在合金中存在大量显微疏松缺陷。沉积锭坯经过热挤压致密化后,合金力学性能显著提高,抗拉强度巩为390MPa,伸长率6为13.3%,表明热挤压工艺可有效消除疏松缺陷,从而充分发挥出喷射沉积工艺优越性。EBSD分析表明,挤压后沿着挤压轴方向形成丝织构,主要为(001)(111)两种织构。

  • 标签: 7055铝合金 喷射成形 热挤压 显微组织 织构
  • 简介:通过硬度、电导率、光学显微镜透射电镜测试手段分析Cu-0.7Fe-0.12P合金性能与组织,研究形变及时效处理其组织性能影响,得出冷变形量热处理工艺优化组合,为该合金实际生产提供参考。合金经900℃固溶并40%冷轧、450℃时效6h、70%冷轧后,在400、450500℃分别时效1h。研究结果表明,在450℃时效合金硬度(141HV)相对电导率(89.9%IACS)均达到了较好状态;而直接合金冷轧变形80%并在450℃时效1h后,相对电导率为70%IACS,比经双冷轧双时效处理后测得合金相对电导率小。

  • 标签: Cu-0.7Fe-0.12P合金 形变热处理 显微组织
  • 简介:将铜粉碳粉分别按质量分数为Cu-2%CCu-8%C配比混合,经过高能球磨得到铜-碳复合粉末,然后冷压成形,压坯在H2气氛、820℃温度烧结2h,获得铜-石墨块体材料。采用X射线衍射、扫描电镜、透射电镜以及电导率测试仪高能球磨后复合粉末块体材料物相组成、微观组织结构导电性能进行分析,研究球磨时间碳含量铜-碳复合粉末块体材料组织结构及性能影响。结果表明,铜碳混合粉末经高能球磨,得到亚稳态Cu(C)过饱和固溶体,经固相烧结后形成“蠕虫状”组织。随球磨时间延长,材料密度先增加后减小,球磨24h时密度最大,Cu-2%CCu-8%C材料密度分别为7.58g/cm36.79g/cm3;电导率随球磨时间延长而增加,球磨72h时Cu-2%CCu-8%C电导率分别为54.2%IACS33.0%IACS。

  • 标签: 铜碳 复合材料 机械合金化 烧结
  • 简介:采用Ni—Cr-B-Si非晶箔作为中间连接层在1090~1180℃真空下钼合金耐热不锈钢进行液态扩散连接,研究扩散连接温度钒合金/不锈钢连接样微观结构、成分分布、显微硬度影响。结果表明:Ni—Cr-B-Si非晶箔熔化后钼合金及310S不锈钢母材具有较好润湿性,在真空下可实现较好冶金结合。中间连接层组织演变为镍基固溶体,并在钼合金一侧发现Mo—Ni—B金属间化合物。随连接温度升高,连接层中元素向母材扩散更加充分,生成金属间化合物层厚度增加,Kirkendall孔洞数量增多。

  • 标签: 钼合金 不锈钢 液态扩散连接 非晶中间层
  • 简介:以Cu为基体,加入Co,Fe,Cr,Sn粉末,采用不同工艺进行混合,经模压成形热压,制备Sn含量(质量分数)分别为4%6%2种超薄cu基金刚石切锯片胎体材料,用显微硬度仪、金相显微镜(0M)、扫描电镜(SEM)X射线衍射(XRD)仪表征该胎体材料显微硬度、组织成分,研究混粉工艺胎体组织硬度影响。结果表明:将采用所有原料粉末进行混合球磨混粉工艺时,所得胎体材料含有更多铜锡固溶体,胎体平均硬度(HV0.1)比未经球磨混粉分别提高186.20MPa(含4%Sn)215.30MPa(含6%Sn);之相比,采用将Cu粉sn粉混合球磨后再加入其他粉末混粉工艺制备胎体,平均硬度略有提高;球磨后sn粉附着在Cu粉上,更易形成铜锡固溶体,并且金属粉末大量变形,发生严重加工硬化,从而影响冷压成形率;随胎体中sn含量从4%增加到6%,铜锡固溶体增加,胎体平均硬度(HV0.1)分别从709.91、884.25896.1lMPa提高到883.18、986.221098.48MPa。

  • 标签: 热压 Cu基胎体 球磨 固溶体 硬度 组织
  • 简介:用搅拌铸造法制备原位合成硼化物增强Mg-Li基复合材料,针对复合材料中增强相分布不均问题,在制备过程中综合采用B4C粉末沉降分级B4C/Li-Mg预合金挤压-重熔工艺,研究该工艺预合金和硼化物/Mg-Li基复合材料组织性能影响。结果表明:B4C粉末进行沉降分级能明显除去粉末中微细颗粒,减少粉末间团聚,并降低粉末氧含量。组合使用粉末沉降分级预合金挤压-重熔工艺能显著提高预合金密度伸长率,改善B4C粉末在预合金中分散性;用该预合金制备硼化物增强Mg-Li基复合材料性能最佳,未采用上述分散工艺制备复合材料相比,增强相分布均匀性明显改善,在保持良好抗拉强度情况伸长率抗弯强度分别提高124.47%7.51%。

  • 标签: B4C 分散 团聚 挤压 MG-LI 塑性
  • 简介:在316L不锈钢粉末中添加Cr2N粉末,采用粉末注射成形工艺制备Cr2N增强奥氏体不锈钢,利用扫描电镜观察能谱分析以及洛氏硬度测定,研究Cr2NMIM316L不锈钢组织、成分硬度影响,并通过中性盐雾试验研究Cr2NMIM316L不锈钢抗腐蚀性能影响。结果表明,316L不锈钢中添加Cr2N后,显微组织仍为典型奥氏体组织,材料密度硬度都有所提高。Cr2N添加量为3%时,不锈钢硬度由64.5HRB提升至78HRB,并且不会导致抗腐蚀性能下降。

  • 标签: 金属注射成形 奥氏体不锈钢 硬化 氮化铬
  • 简介:采用熔体快淬法制备FeSiAl快淬带料;利用行星式高能球磨工艺进行扁平化处理;使用真空管式炉进行氢还原退火处理;采用SEM、PPMS表征试样形貌及室温磁滞回线;使用矢量网络分析仪测量试样在10~100MHz频段复磁导率;采用抗干扰性能测试系统测量表征磁片抗干扰标签读写距离;研究影响FeSiAl粉体材料磁性能主要因素,并分析了其作用机理。结果表明,采用高低速两步法高能球磨处理,能有效提高薄片状FeSiAl材料径厚比;氢还原退火处理能有效提高饱和磁化强度磁导率,降低矫顽力磁损耗;制备片状FeSiAl材料在13.56MHz频率附近具有优异近场通信抗电磁干扰性能。

  • 标签: 熔体快淬 Fe Si Al 行星式高能球磨 氢还原退火
  • 简介:在元素粉末反应制备多孔材料中,原料粉末粒度是影响其多孔结构主要因素之一。本文通过元素粉末反应合成方法制备Cu-Al多孔材料,研究原料粉末粒径Cu-Al多孔材料孔径、孔隙度、透气度体积膨胀率参数影响。结果表明:Al粉粒径是影响Cu-Al多孔材料最大孔径主要因素,材料最大孔径dmAl粉粒径dp之间严格遵循dm=0.48dp线性变化规律;Cu粉粒径则Cu-Al多孔材料最大孔径影响较小。当粉末粒径在48.5μm以上时,粉末粒径改变Cu-Al多孔材料开孔隙度总孔隙度影响不大。在实验研究范围内,Cu-Al多孔材料体积膨胀率随粉末粒径增大而增大;当粉末粒径很小时,Cu-Al多孔材料存在体积收缩趋势。

  • 标签: 粉末粒径 CU-AL合金 多孔材料 反应合成
  • 简介:AA1050工业纯铝在动态高应变速率(1.2×10^3s-1)准静态低应变速率(1×10^-3s-1)进行单向压缩多向压缩加载,单向多向压缩以相同道次应变量进行,累计应变量分别为1.63.0,利用TEM观察变形后合金微观组织结构特征。结果表明,多向加载或/高应变速率变形有助于金属塑性发挥。单向压缩变形后试样产生类似竹节状片层组织,拉长亚晶或位错胞分布于组织内。经多向压缩变形合金组织表现为大量近似轴状亚晶或位错胞,位错缠结严重。高应变速率变形过程中,动态回复受到抑制,可产生更高位错密度,从而组织细化效果优于低应变速率变形。

  • 标签: 单向/多向压缩 应变速率 晶粒细化 位错
  • 简介:以8种不同孔结构活性炭为实验对象,利用低温N2(77K)吸附法测定活性炭比表面积孔径分布,并将其涂布到铝箔集流体上组装成双电层超级电容器。以1mol/L四氟硼酸四乙基铵乙腈溶液(Et4NBF4/AN)为电解液,利用循环伏安和恒流充放电技术研究活性炭比表面积、中孔微孔分布以及孔容双电层电容器倍率衰减性能影响。结果表明:活性炭比表面积、孔径孔容适量增大均能提高活性炭比容量;中孔适量增加不仅可以减小超级电容器电阻,还可以提高活性炭大电流充放电性能,降低大电流充放电时电容衰减。当电流密度从0.15A/g增大到9.6A/g时:中孔活性炭比电容衰减率平均为14.13%,而微孔活性炭平均衰减率为20.58%;中孔表面积对比电容贡献由10.10μF/cm2降至9.95μF/cm2,而微孔表面积贡献则由5.68μF/cm2降至4.21μF/cm2。

  • 标签: 超级电容器 活性炭 孔分布 倍率衰减性能
  • 简介:退火态AHPT15M粉末高速钢进行盐浴淬火处理,然后退火态样品淬火态样品进行深冷处理、回火处理同步热磁分析,研究深冷处理AHPT15M粉末高速钢回火转变影响。结果表明,退火态粉末高速钢中铁素体含量(体积分数)约为71.5%;淬火态钢中马氏体含量(体积分数,下同)约为45.2%,在经过1、2、3次823K/1h连续回火处理后,马氏体含量分别约为68.5%、71.0%71.3%;回火前增加143K深冷处理工序,在深冷后l、2、3次回火后,钢中马氏体含量分别约为59.8%、69.9%、70.9%71.3%。深冷处理可提前残留奥氏体向马氏体转变进程、抑制残留奥氏体中碳化物析出,并促进马氏体中更大量(约2.3%)微细碳化物析出,使钢硬度提高52HV0.1。

  • 标签: 粉末高速钢 回火 深冷处理 碳化物 硬度
  • 简介:用滚镀方法在金刚石表面镀Ni层纳米Si3N4/Ni复合镀层,用扫描电子显微镜观察金刚石镀前镀后表面形貌,用DKY-1型单颗粒抗压强度测定仪测量金刚石单颗粒抗压强度。用热压烧结方法得到铁基结合剂金刚石节块,在INSTRON-5569型万能材料试验机上测量节块抗弯强度,在NMW-1立式万能摩擦磨损试验机上测试节块耐磨性。结果表明:在金刚石表面镀Ni层纳米Si3N4/Ni复合镀层后,表面镀层均匀,纳米Si3N4/Ni复合镀层比纯Ni层更致密,更平滑,晶粒更细小;纳米Si3N4/Ni复合镀层金刚石单颗粒有更高抗压强度;纳米Si3N4/Ni复合镀层金刚石铁基结合剂节块有更高抗弯强度更优良耐磨性。

  • 标签: 纳米Si3N4/Ni 复合电镀 铁基结合剂 金刚石节块 表面形貌 力学性能
  • 简介:利用赤泥、钢渣滑石为原料,在没有特殊添加剂情况,经过模压成形烧结制备赤泥/钢渣陶瓷材料。通过高倍电镜、差热分析x射线衍射材料形貌结构进行观察分析,并测试吸水率抗弯强度,研究原料成分粒径陶瓷材料性能影响。结果表明,赤泥/钢渣陶瓷材料主晶相为透辉石钙长石。原料粉末粒度越小,陶瓷性能越好;赤泥用量为70%时材料性能最佳。综合考虑陶瓷砖块性能与能源消耗,采用烧结温度为1170℃,选用粒径小于74gm原料粉末,在赤泥、转炉钢渣滑石用量分别为60%~70%、20%~30%~H10%条件制备赤泥/钢渣陶瓷材料,材料显气孔率吸水率都达到建筑陶瓷国家标准(GB/T4100.2006)技术要求0.73%0.03%,抗弯强度超过88MPa。

  • 标签: 结构与性能 粒径 陶瓷材料 Fe2O3含量
  • 简介:通过添加W粉或C粉调整WC原料粉末总碳含量(质量分数)为6.04%~6.16%,采用低压烧结法制备WC-9Ni-1Cr细晶硬质合金。采用光学金相显微镜、X射线衍射、扫描电镜,研究碳含量WC-9Ni-1Cr细晶硬质合金组织结构及性能影响。结果表明:在WC-Ni系合金中添加适量Cr元素,得到无磁WC-Ni硬质合金,并且其无磁特性不随合金中碳含量变化而发生转变。WC粉末总碳含量为6.04%~6.16%时WC-9Ni-1Cr细晶硬质合金为二相区正常组织,只存在WC相Ni相,没有石墨夹杂或η相;而且在此二相区范围内WC碳含量变化WC-9Ni-1Cr细晶硬质合金耐腐蚀性没有明显影响。随WC粉末碳含量增加,合金硬度(HRA)密度都逐渐降低,但降低幅度较小,而合金抗弯强度逐渐提高。碳含量由6.04%增加至6.16%时,抗弯强度由2250MPa提高到2850MPa,提高26.6%。

  • 标签: 碳含量 硬质合金 微观结构 性能
  • 简介:引入“固态扩渗+轧制”表面改性方式,即在研究镁合金薄板表面改性方法及工艺基础上,采用固态粉末包覆热扩渗方法,AZ31镁合金薄板进行表面改性处理,获得研究目标材料;借助有限元软件Ls—DYNA模拟其冷轧过程,获得最优轧制工艺参数并进行轧制实验,通过x.射线衍射(xRD)、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机CorrTest腐蚀电化学测试系统检测材料表面的组织性能。结果表明:轧制变形后表面组织晶粒更加细小、均匀;耐磨性有所改善,表面硬度由HB61.4提高至HB63.5,摩擦因数由0.52变为0.6,表面摩擦磨损质量损失由0.33mg降低至0.26mg;表面耐腐蚀性能显著提高,其开路电位由-1.594V变为-1.574V,自腐蚀电位由-1.574V变为-1.38V,自腐蚀电流密度由6.2×10-3mA/cm2变为7.0×10-4mA/cm2。

  • 标签: 轧制 固态扩渗 镁合金 表面性能 LS-DYNA
  • 简介:基于金刚石钻头干钻时出现较高摩擦热现象,采用MoS2作为胎体润滑剂,用电镀法制备MoS2-Ni复合胎体材料,以减小胎体摩擦因数、降低摩擦热;并研究电镀工艺MoS2复合镀层显微硬度低温低压下复合镀层胎体摩擦性能影响。结果表明:随镀液中MoS2浓度增大,镀层显微硬度胎体摩擦因数降低,当MoS2浓度大于0.5g/L时,镀层显微硬度胎体摩擦因数变化不大;随镀液pH增大,镀层显微硬度降低,胎体摩擦因数先减小后增大,当镀液pH增大到4.0后,镀层显微硬度变化不大,胎体摩擦因数达最小值;随镀液电流密度增大,镀层显微硬度胎体摩擦因数先减小后增大,当电流密度增大到2.5A/cm2时,镀层显微硬度胎体摩擦因数达到最小值。摩擦磨损后胎体材料形貌分析表明,控制好电镀工艺条件,可实现低温低压下MoS2-Ni复合材料胎体润滑作用。

  • 标签: 低温低压 电镀 MOS2 金刚石钻头 摩擦性能
  • 简介:利用雾化沉积炉制备喷射成形2060高速钢沉积坯,经过锻造后再进行盐浴淬火回火处理,研究喷射成形2060高速钢及其热处理后组织力学性能。结果表明:喷射成形2060高速钢沉积坯表面较光洁,无明显宏观偏析,晶粒较细小,晶粒尺寸约为20邮1,沉积坯相对密度在99.5%以上;沉积坯中主要存在M6CMC两种碳化物相,均匀弥散分布在晶界晶内以及基体中,氧含量只有1.6×101左右。2060高速钢抗弯强度随淬火温度升高而逐渐降低,淬火温度应低于1210℃。在1170-1190℃淬火时可获得抗弯强度≥3000MPa、硬度≥70HRC良好综合力学性能。

  • 标签: 喷射成形 高速钢 力学性能 组织
  • 简介:以四氯化锡氨水作为原料,采用水热合成法制备SnO2纳米粉体。探讨反应溶液浓度、水热合成温度、水热合成时间初始溶液pH值纳米SnO2粉体性能及形貌影响规律,并确定最佳工艺参数,同时水热合成过程中出现SnO2纳米棒异常现象进行初步分析。结果表明:采用水热合成法制备SnO2纳米粉体均为四方晶系金红石型结构,粉末粒径为5~12nm,呈近球形。在反应溶液浓度0.5~2.0mol/L条件,随反应溶液浓度升高,制备粉体晶粒平均粒径呈线性增长;在水热合成温度160~220℃范围内,随温度升高,SnO2粉体平均粒径从5.1nm增大到9.8nm,在200℃时会出现降低;在水热合成时间6~30h条件,随反应时间延长,SnO2粉体平均粒径增大,在20h时降低;随溶液pH值升高,制备粉体晶粒平均粒径减小。在1.0mol/L、pH值10反应溶液中,在200℃保温20h工艺条件进行水热合成反应,所制备粉体平均粒径为5.5~8.5nm,粉体均匀性分散性良好。

  • 标签: 水热合成 SNO2 纳米粉体 制备 粒径
  • 简介:采用粉末冶金组合烧结技术制备由Fe-Cr-Mo-P-Si-Cu-C凸轮16Mn钢管为芯轴组成中空凸轮轴,凸轮密度、硬度物理性能、摩擦磨损性能微观组织进行测试分析,研究烧结致密化机理,并与传统凸轮材料球墨铸铁摩擦磨损性能进行对比。结果表明:Fe-Cr-Mo-P-Si-Cu-C凸轮材料在烧结过程中产生Fe-C-P三元液相,Cr、Mo元素溶解于液相中使得液相量显著增加,促进液相烧结,体积收缩率高达19.1%。凸轮材料平均密度为7.51g/cm3,平均硬度(HRC)53.7,钢制芯轴形成牢固冶金结合,扭矩高达1150N·m,连接可靠性较好;该凸轮材料硬度传统球墨铸铁凸轮材料相近,耐磨性是球墨铸铁3倍,质量减轻35%,满足发动机使用要求。

  • 标签: 粉末冶金 中空凸轮轴 组合烧结