学科分类
/ 7
134 个结果
  • 简介:某型列车运载量增大后,列车车钩尾销牵引弧面位置大量出现裂纹。本文车钩尾销的化学成分和机械性能进行了检测,观察了车钩钩尾销裂纹的宏微观形貌,并对裂纹位置的金相组织进行了检测。结果表明,车钩钩尾销裂纹在径向上为脆性断裂特征,而周向上为疲劳断裂特征。分析认为,由于列车运载量增大,车钩尾销位置的工作应力增大,同时由于车钩尾销处淬硬层与基体的性能差异较大且无明显的过渡层,在工作应力作用下淬硬层首先发生脆性断裂并沿径向扩展,至淬硬层与基体界面处则沿着性能较弱的界面疲劳扩展。

  • 标签: 车钩 尾销孔 淬硬层 大应力 疲劳扩展
  • 简介:某机在大加力起飞过程中振动大,发动机声音异常,分解后发现一片低压三级转子叶片从销钉处断裂。对叶片销钉断口宏、微观特征进行分析,对加工质量、工艺、尺寸进行复查,并在叶片振动计算和测频试验结果分析的基础上,确定叶片的失效原因。分析结果表明:其失效原因是在叶片销钉进气边侧靠近端面处存在台阶,致使在工作状态下最大受力点处的应力升高,在该处形成了应力集中的疲劳源,最终导致叶片销钉发生疲劳断裂。

  • 标签: 转子叶片 销钉孔 疲劳断裂 应力集中
  • 简介:基于有限元软件ABAQUS和三维裂纹扩展分析软件Franc3D,对涡轮盘中心三维疲劳裂纹扩展进行研究分析。首先,对平板试样表面裂纹进行裂纹扩展模拟计算研究,对比手册中Gross/Brown理论模型验证裂纹扩展应力强度因子数值模拟的准确性;其次,针对涡扇发动机涡轮盘结构,对轮盘不同外缘等效应力、转速情况的应力强度因子以及考虑初始缺陷的三维疲劳裂纹扩展寿命进行计算;最后,讨论发动机载荷差异对应力强度因子和裂纹扩展寿命影响规律。结果表明:在相同裂纹长度时,应力强度因子随着轮盘外缘等效应力和转速增加而增大,载荷越大疲劳寿命则越短,且裂纹越长,影响越大。为工程上三维裂纹扩展计算以及寿命评估提供参考。

  • 标签: 涡轮盘 应力强度因子 三维裂纹扩展 疲劳寿命
  • 简介:为研究通直径在钢管涡流检测中对检测信号的影响,开展了不同磁化强度下钢管通涡流检测试验,研究了不同直径通随磁化电流的信号变化特征。试验结果表明:通直径一定时,在非饱和磁化区(6~18A)内,信号幅值随电流的增加先增大后减小,相位角随电流的增加逐步上升,在饱和磁化区(20~22A)内,检测信号成形较小或严重扭曲,相位变化杂乱无章;当磁化电流一定时,信号幅值随通直径的增大而增大,不同直径通间信号相位角在非饱和磁化区(6~18A)内,最大值与最小值的极值偏差在10°~18°范围内变化,差异较小,而在饱和磁化区(20~22A)信号相位角变化起伏较大,无明显规律。试验研究结果可用于指导钢管涡流检测工程实践。

  • 标签: 钢管 通孔直径 涡流检测 涡流信号 磁化区
  • 简介:通过裂纹和断口的观察、理化检验、模拟仿真及其力学计算,分析了840D车轮辐板裂纹的特征、机理和原因。结果表明:裂纹属于高低周复合机械疲劳,裂纹主要在制动加机械载荷工况下萌生和扩展。统计分析确定了裂纹扩展速率,结合裂纹发展形态和理论计算给出了临界裂纹长度,进而评估出裂纹容限为20mm。

  • 标签: 车轮 疲劳失效 裂纹容限
  • 简介:《新材料产业“十二五”发展规划》(以下简称《规划》)明确提出,在“十二五”期间,将集中力量组织实施一批重大工程和重点项目,突出解决一批应用领域广泛的共性关键材料品种,提高新材料产业创新能力,加快创新成果产业化和示范应用,扩大产业规模,带动新材料产业快速发展。其中“新型节能环保建材示范应用专项工程”是10类重大专项工程之一,界定的主要内容为“组织推广400MPa以上高强度钢筋、高效阻燃安全保温隔热材料,新型墙体材料、超薄型陶瓷板(砖)、无机改性塑料、木塑等复合材料.Low-E中空/真空玻璃.涂膜玻璃、智能玻璃等建筑节能玻璃。提高建筑材料抗震防火和隔音隔热性能,加快绿色建材产业发展,扩大应用范围,推动传统建材向新型节能环保建材跨越”。为更好地了解《规划》确定的重大专项工程相关组织实施情况,记者选取“新型节能环保建材示范应用专项工程”中的“木塑复合材料”,特意采访了北京化工大学“木塑复合材料”研究领域及组织推广方面的徐日炜副教授.牛茂善博士和廖延君高工等相关专家。

  • 标签: 木塑复合材料 新材料产业 北京化工大学 工程 木塑材料 专家
  • 简介:为贯彻落实《中华人民共和国国民经济和社会发展第十三个五年规划纲要》和《中国制造2025》,引导“十三五”期间新材料产业健康有序发展,工业和信息化部、国家发展改革委、科技部、财政部联合制定《新材料产业发展指南》,指南于2016年12月30日印发。以下是工信部原材料工业司发布的《新材料产业发展指南》解读:

  • 标签: 新材料产业 指南 解读 中华人民共和国 国家发展改革委 原材料工业
  • 简介:金相学是一门既古老又不断闪烁耀眼光环的学科,顾名思义,主要研究金属材料中相的组织、形貌及其结构。金属学的萌芽可以归功于AloysVonWidmansttten(简称"魏氏")在1808年的首先发现。魏氏将铁陨石切成试片,经抛光再用硝酸水溶液蚀刻,利用类似我国拓碑技术将针状奥氏体印制下来,在人类历史首次揭开了金相学神秘的面纱。1863年H.C.Sorby(简称"索氏")用光学显微镜在被蚀刻的钢铁试片上证实了魏氏当年揭示的组织结构,并称之为魏氏组织,这应当是金相学真正的开始。

  • 标签: 金相学 针状奥氏体 金相照片 铁陨石 光学显微镜 耀眼光环
  • 简介:材料的失效破坏是一个复杂的过程,迄今为止已有上百个理论模型来研究材料的强度问题,本文重点介绍了统一强度理论,它给出了一系列破坏准则,并建立了准则之间的关系。根据复合材料的特点以及基体、增强相、界面、工艺对复合材料强度的影响关系,阐述了复合材料的宏观强度理论中不同破坏准则之间的差异和特点,并指出采用宏观与细观相结合的方法研究复合材料损伤和强度理论的必要性。

  • 标签: 复合材料 强度 损伤 随机性
  • 简介:本文综述IC封装技术的发展对埋容材料的需求及要求,埋容材料的现状及市场发展,以及存在的缺点。

  • 标签: 埋容材料
  • 简介:铜被其他材料替代,从而使铜市场受到损失,对于铜生产企业来说一直是个隐忧,企业虽然已经讨论过这种损失的程度,但很少加以量化。CRU利用自己的数据体系对历史上由于这种替代造成的损失和替代过程的结果进行评估,并对替代因素、受到影响的主要产品及其使用,以及替代的主要驱动器——价格、技术变化和法规进行了分析。

  • 标签: 铜市场 替代材料 竞争 生产企业 材料替代 数据体系
  • 简介:复合材料桨叶设计重点考虑其疲劳性能和环境老化性能,变形失效问题则很少涉及。通过对处于不同变形损伤阶段的桨叶结构和复合材料损伤情况进行观察分析,对复合材料桨叶的变形失效问题进行了分析和讨论。结果表明:桨叶叶根材料在叶根套离心力压迫、离心应力及循环载荷下出现塑性变形损伤累积,使得玻璃纤维织物和泡沫塑料出现鼓包堆积,最终导致桨叶变形失效;在叶根部位增加刚性支撑结构,增强叶根填块的粘接强度可以共同抵抗离心力和棘轮效应引起的轴向应力和应变,可以有效预防桨叶的变形失效。复合材料构件在设计时除了要考虑常规的疲劳性能外,材料棘轮效应可能引起的复合材料变形失效问题也要加以重视。

  • 标签: 复合材料 旋翼桨叶 变形失效 棘轮效应 预防措施
  • 简介:在汽车和电动汽车中需要的PWB必须具有高的热传导性和良好的连接可靠性。根据安装在汽车引擎室内的环境要求,日本新神户电机公司新开发的具有超过150℃玻璃化温度的金属基覆铜板CEL-323。该覆铜板制作的PWB在-40℃-125℃下进行冷热循环实验,无铅焊接通过了3000次的冷热循环实验,镀通连接通过了超过3000个冷热循环的实验,被确认比常规的FR-4材料更可靠。

  • 标签: 基板材料 汽车用 开发 PCB 循环实验 冷热循环
  • 简介:复合材料层合板疲劳损伤机理和寿命预测是关系到现代航空结构损伤容限设计的关键问题。通过对复合材料层合板疲劳损伤特征研究,从应变等效性出发,结合经典刚度降法,建立层合板疲劳寿命预测两阶段宏观唯象模型,弥补了经典刚度降法和S-N曲线模型的不足。应用此模型对新型的缝合复合材料层合板进行了相关分析与研究,并将预测结果与试验结果进行了对比。结果表明,所建立的疲劳寿命预测模型结果与试验结果吻合良好,可为缝合复合材料的失效分析与工程应用奠定一定的理论基础。

  • 标签: 复合材料层合板 疲劳 损伤 刚度
  • 简介:散热基板用基板材料——金属基覆铜板、高导热性有机树脂基覆铜板(高导热性的CEM-3、FR-4、FCCL等)在2012年CPCA展览会上仍成为基板材料展示的热点之一。据记者对此次展出这类覆铜板产品的参展单位的不完全统计,约有十四、五家。其中包括的参展商有:联茂电子公司、广东生益科技公司、超顺电子公司、珠海全宝电子公司、华正新材料公司、上海南亚公司、东莞聚邦电子公司、成阳众鑫电子公司、焦作恒源电子公司、金安国际公司、台虹科技(高导热性FCCL)公司、相模商工公司(代理松下电工高导热性CEM-3等产品)、新日铁公司(高导热性FCCL)、珠海亚泰公司(高导热性成胶膜)等。为了在这个各种散热基板用基板材料生产厂家“大聚会”的时机更多、更及时地对散热基板材料市场与技术的新发展、新动向有所了解。记者以此专题对参展的四个厂家高层领导及技术人员做了访谈,并发表于此,与读者共享。

  • 标签: 基板材料 CPCA 散热 电子公司 CEM-3 展会
  • 简介:碳/矿环氧复合材料管在弯曲疲劳试验时发生开裂,疲劳次数远低于设计要求。管子的成型工艺为碳布缠绕成型。对碳/环氧复合材料管裂纹部位进行了宏观、微观观察,对环氧树脂基体采用红外光谱分析。观察和分析结果表明:碳/环氧复合材料管的失效性质为低周疲劳;复合材料管发生早期疲劳失效的主要原因是由于安装附近存在分层缺陷,导致该区域层间结合强度及抗疲劳性能降低,分层缺陷产生的原因是由于该区域富集较多的环氧树脂用粉末状固化剂。

  • 标签: 碳/环氧复合材料 弯曲疲劳试验 分层缺陷