学科分类
/ 1
2 个结果
  • 简介:摘要 : 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡( DSEB)的事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式中引入与节点到 sink的距离成正比的权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知的事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值的前提下,基于 DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

  • 标签: 认知无线传感器网络 (CRSN) 作物表型信息采集 能耗均衡 分簇路由
  • 简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。

  • 标签: 智慧农业 卷积神经网络 多光谱图像 玉米作物 营养状况识别