学科分类
/ 2
32 个结果
  • 简介:以硝酸锶、七钼酸铵、氧化镨为原料,采用低温燃烧法合成白光发光二极管(whitelightemittingdiode,简称WLED),用新型红色荧光SrMoO4:Pr3+,并研究其光谱性质。结果表明,SrMoO4:Pr3+激发光谱中Pr3+在449nm处有一最强3H4->3P0激发峰,其激发范围与蓝光LED芯片相匹配,能被蓝光有效激发;发射光谱在644nm处有最强峰,属于Pr3+的3P0->3F2跃迁,发红光,说明SrMoO4:Pr3+荧光是1种潜在的白光LED用蓝光激发的红色荧光。同时还研究了燃烧温度、尿素用量、稀土Pr3+掺杂量对荧光发光强度的影响,得出制备SrMoO4:Pr3+的最佳条件为:燃烧温度600℃,尿素用量为理论尿素用量的3倍,稀土Pr3+离子掺杂摩尔分数为2%。

  • 标签: 光致发光粉 低温燃烧法 红色荧光粉 SrMoO4:Pr^3+
  • 简介:以葡萄糖为还原剂,CuO为铜源,PVP为添加剂,NaOH为中和剂,采用水热还原法制备铜,研究反应液中NaOH的浓度、葡萄糖的浓度、反应时间及反应温度对铜的形貌与物相组成以及粒度与抗氧化性能的影响.结果表明,当反应溶液中NaOH的质量浓度ρ(NaOH)小于120g/L时,或葡萄糖的质量浓度小于270g/L时,或反应时间不足6h时,CuO不能完全被还原为金属铜,产物中存在氧化亚铜.NaOH浓度与葡萄糖的浓度以及反应温度对铜粉粒度都有显著影响.随ρ(NaOH)增加,铜粉粒度增大,团聚加重,而随葡萄糖浓度增加或反应温度升高,铜粉粒度减小.在ρ(葡萄糖)为315g/L,ρ(NaOH)为120g/L,反应温度为120℃,反应时间为6h条件下可制得平均粒径为4.039μm的类球形铜,该铜的起始氧化温度为190℃,具有较好的抗氧化性能.

  • 标签: 铜粉 水热 还原 葡萄糖 氧化铜
  • 简介:以锆、锰、铁的硝酸盐和甘氨酸为原料,采用溶液燃烧法制得超细金属氧化物前驱体,再将前驱体分别在750、850和950℃由氢化钙还原得到锆锰铁三元合金微。用热重/差热分析法(TG/DTA)、X射线衍射(XRD)、扫描电镜(SEM)等对溶液燃烧和钙还原2个阶段的产物进行分析与表征。结果表明:采用溶液燃烧法合成的金属氧化物前驱体颗粒分布均匀,粒度为数百纳米;采用氢化钙还原氧化物前驱体,在温度≥850℃,Ar气氛下反应1h可制得ZrMnFe三元单相合金微,粒度为亚微米或微米级。

  • 标签: 溶液燃烧 钙还原 锆锰铁合金
  • 简介:用MSC.Marc软件模拟了在3种不同装方式下钛压制成形过程中粉末的流动情况以及压坯的密度分布规律.研究结果表明:装方式对粉末压制过程及压坯密度具有较大的影响,与平式装方式相比,采用凸式装,试样的烧结坯密度提高6%,孔隙分布的均匀性得到相应的改善.

  • 标签: 钛粉 粉末压制 数值模拟 装粉方式
  • 简介:以V2O5为原料,采用碳热还原法制备氮化钒,通过扫描电镜(SEM)和X射线衍射(XRD)观察与分析还原氮化产物的形貌与组成,分析产物的碳、氮、氧含量,研究原料配碳量、氮化温度和氮化时间等对还原氮化产物的影响。结果表明:还原氮化产物为碳氮化钒的固溶体。原料配碳量是影响反应产物中氮含量的关键因素,配碳比(质量分数)约为21%时还原氮化产物具有最高的氮含量14.76%;氮化温度应控制在1400~1420℃范围内,氮化时间达到4h即可实现氮化完全。

  • 标签: 五氧化二钒 氮化钒 碳热还原 氮化
  • 简介:以纳米Cr2O3和乙炔黑为原料,经高温还原碳化制备超细Cr3C2粉末,研究反应温度、反应时间以及配碳量对Cr3C2粉末的粒度与游离碳含量的影响。通过热力学计算,只有当温度高于1350K时还原碳化反应才有可能进行,采用纳米Cr2O3可显著降低反应温度,在1573K下焙烧6h碳化率即达到98.20%;Cr3C2粉末的游离碳含量随配碳量增加而显著提高,配碳量(质量分数)为理论配碳量的1.05倍时制得游离碳含量为0.23%、氧含量为0.91%(均为质量分数)、平均粒度为1μm的Cr3C2粉末,该粉末达到硬质合金及热喷涂应用的要求。

  • 标签: 纳米Cr2O3 还原碳化 超细Cr3C2 游离碳 粒度
  • 简介:用热重分析法研究低温条件下(450、500、550和600℃),氢气还原微尺度氧化铁的还原动力学行为。结果表明:随氧化铁粉粒径减小和反应温度升高,初始反应速率加快,后期反应速率减慢。这是因为反应后期生成大量铁须,铁须之间形成搭桥,导致还原后的粉末严重烧结并致密化,阻碍气体的扩散,致使反应速率减慢。且随着体粒径减小,体表面吸附能增大,体致密程度提高,反应后期的粘结现象更加严重,反应速率相应减慢。采用Hancock-Sharp方法分析微尺度氧化铁粉恒温还原的动力学过程,发现前期阶段Fe2O3→Fe3O4,在500℃以下,相界面化学反应的阻力所占的比例较大,表明此阶段的反应控速环节为界面化学反应,温度超过500℃时,则由界面化学反应机理和相转变机理共同控制,点阵结构由Fe2O3的斜方六面体结构转变为Fe3O4的立方结构;后期阶段Fe3O4→Fe,由于体发生粘结,还原反应的控速环节转变为扩散控速。

  • 标签: 微尺度氧化铁粉 低温 氢气 Hancock-Sharp法 还原动力学
  • 简介:与通常采用纯雾化铁粉和部分合金化铁粉作为温压基不同,作者对水雾化Fe-Ni-Mo合金钢作基的Fe-1.5Ni-0.5Mo-1.0Cu-xC(x=0.6,0.8,1.0)粉末进行了温压与烧结行为的研究.结果表明,通过设计新型聚合物润滑剂,高硬度的合金钢仍适用于温压工艺.当粉末和模具的加热温度分别为125和145℃时,Fe-1.5Ni-0.5Mo-1.0Cu-0.8C的温压密度较高.在735MPa的压力下进行压制,压坯密度达到7.35g/cm3,比室温压制提高了0.19g/cm3左右.并且,温压压坯的弹性后效比室温压制降低了40%,在1120℃烧结1h后的烧结密度为7.32g/cm3.

  • 标签: 水雾化Fe-Ni-Mo合金钢粉 温压 烧结
  • 简介:以不规则形状铌为原料,通过射频等离子体球化处理制备球形铌,并研究加料速率对粉末球化率的影响。采用扫描电镜、X射线衍射仪和激光粒度分析仪对球化处理前后粉末的形貌、物相和粒度分布进行测试和分析。结果表明:不同粒径的不规则形状铌,经等离子球化处理后均可得到表面光滑、分散性好、球化率可达100%的球形铌。球化处理后,粉末的粒度分布变窄。随加料速率的增加,铌的球化率降低。经射频等离子体处理后,铌的松装密度和流动性得到显著改善:松装密度由1.33g/cm3提高到4.35g/cm3,振实密度从1.95g/cm3提高到5.61g/cm3,粉末流动性提高到12.51s/(50g)。

  • 标签: 射频等离子体 球形铌粉 球化率
  • 简介:超细钨粉以其显著的优点,早已成为多种重要功能材料和结构材料的主要原料,但以喷雾干燥法等常规制粉工艺制得的钨粉末均为前驱复合氧化物粉末,必须对其进行氢还原才能最终制备出超细钨基复合粉末或钨基复合材料。为此,该文作者综述了氧化钨及其复合氧化物粉末的还原工艺、原理及不同条件下还原后所得粉末的特性,分析了采用不同特征的氧化钨及其复合氧化物做原料可得到不同性能还原W的原因,并对氢气还原过程中粉末粒度及其均匀性的影响等因素进行了详细论述,获得了一些参考性认知。

  • 标签: 氧化钨 钨基复合氧化物 还原工艺 还原机理
  • 简介:以莱钢集团粉末冶金有限公司LAP100.29水雾化铁粉为原料,在900℃下进行高温氢气还原,研究高温还原处理对水雾化铁粉的显微硬度、化学成分、松装密度、流动性、压缩性等性质的影响,以期对实际生产起到一定的借鉴和指导作用。结果表明:经900℃高温氢气还原处理后的铁粉纯度提高,大部分样品的流动性提高约2s/50g,松装密度提高0.1g/cm^3左右,压制密度提高0.1g/cm^3以上,而粉末显微硬度大幅降低至69~89HV。在600MPa下铁粉压制密度大部分达到7.15g/cm^3以上。

  • 标签: 水雾化 铁粉 压缩性 精还原
  • 简介:采用喷雾造粒制备Fe2O3空心球团粒,团粒经过氢气还原得到中空Fe颗粒,通过扫描电镜(SEM)观察Fe2O3空心球团粒及其截面的形貌,研究还原时间对Fe颗粒形貌与截面形貌的影响;采用激光衍射粒度分析仪对Fe颗粒进行粒径分析;采用比表面及孔隙度分析仪表征Fe颗粒的比表面积;采用CSM-MCT显微硬度仪测量空心球状Fe颗粒球壁的硬度和弹性模量。结果表明:Fe2O3空心球团粒和Fe颗粒均为多孔中空球状结构,球壁上存在大量微孔,中空孔直径和球颗粒直径的比值在0.4~0.5;在650℃下还原,随着还原时间增加(4,5,6h),球壁晶粒逐步长大,中空球状Fe颗粒的比表面积和粒径逐步减小,球壁趋向致密,硬度和弹性模量提高。

  • 标签: 喷雾造粒 中空球状结构 Fe颗粒 制备与表征 力学性能
  • 简介:硝酸银溶液中加入浓氨水配制成一定pH的银氨溶液,加入双氧水作还原剂制备超细银粉,对加料方式、银氨溶液pH值、AgNO3溶液浓度、双氧水浓度等参数以及分散剂对银粉的影响进行研究。结果表明,采用正向快速加料法可制备出分散性好的银粉;调节银氨溶液pH值可改变银颗粒的Zeta电位,进而改变银粉的分散性;银粉粒径随双氧水浓度提高先增大后减小,随AgNO3溶液浓度提高而增大;分散剂对银粉形貌有较大影响。在硝酸银溶液浓度为0.1~0.3mol/L,银氨溶液pH值为10.0~11.0,双氧水浓度(质量分数)为3%的条件下,不使用任何分散剂可制备出分散性较好、平均粒径1.9~2.3μm的类球形银粉。

  • 标签: 超细银粉 双氧水 分散剂 ZETA电位 气泡分散机理
  • 简介:通过DSC-TG、TPR、XRD等测试手段,研究共沉淀法制备的铁钴铜复合草酸盐的热分解、煅烧和还原过程。结果表明:在氩气气氛中,铁钴铜复合草酸盐于213.05℃失去1.4个结晶水,在396.93℃直接分解成铁/钴/铜合金混合粉末;在400℃的空气气氛中铁钴铜复合草酸盐可以煅烧成铁钴铜复合金属氧化物,并且具有与四氧化三铁相同的晶体结构;在475℃的氢气还原性气氛中,铁钴铜复合金属氧化物被还原成具有FeCu4、Co3Fe7和CoFe三种物相的均匀Fe-Co-Cu合金混合粉末,由此证明铁钴铜复合草酸盐也可以通过煅烧+还原的方式制备得到铁钴铜合金混合粉末。

  • 标签: 铁钴铜复合草酸盐 共沉淀 热分解 煅烧 还原
  • 简介:以海绵钛作可溶阳极,纯钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在电解温度为900~980℃、阴极电流密度为0.1~0.6A/cm2、初始可溶钛浓度2%~8%的条件下,电解24h制备高纯钛,研究初始可溶钛浓度对钛中杂质元素含量的影响,以及电流密度和初始可溶钛浓度对电流效率及钛形貌的影响。结果表明,钛杂质含量完全达到高纯钛的标准,提高初始可溶钛浓度可降低杂质含量在较高的阴极电流密度以及高的初始可溶钛浓度下电解效率较高在阴极电流密度较高时钛为细小的树枝状晶体,而在阴极电流密度较低时得到较粗大均匀的结晶体。

  • 标签: 熔盐电解 高纯钛粉 电流密度 可溶钛浓度
  • 简介:采用对电解液进行超声分散的新型电沉积法,制备超细铜,借助x射线衍射(xRD)、扫描电镜(SEM)、透射电镜(TEM)和激光粒度分析(SL)对所得粉末进行表征,研究电解液中Cu^2+浓度对粉末形貌、粉末粒径以及电流效率的影响,深入探讨粉末的形成机理。结果表明:所生成的粉末为弦c结构的单质铜;取决于乳化液中表面活性剂的分布,粉末具有鱼骨状和不规则状两种形貌;随着电解液浓度从0.03mol/L增加到0.09mol/L,铜的平均粒径从0.92μm线性增加到1.8μm,电流效率从65.5%线性提高到91.3%。

  • 标签: 铜粉 电沉积 超声
  • 简介:以SiO2、碳黑和少量添加剂(CaO,MgO或Al2O3)为原料,在流动氮气中于1350~1550℃下,对SiO2碳热还原-氮化产物进行了研究.结果表明,试样S-1,S-2分别在1400℃和1450℃加热4h后,均生成Si2N2O和Si3N4混合物;在1550℃保温4h,这2种试样生成的产物均为SiC.试样S-3在140℃和1450℃加热4h后所得产物为Si3N4和SiC.氧化物添加剂可以促进碳热还原-氮化反应的进行,并保留在生成的粉末体中,在随后的粉末热压或无压烧结中起烧结助剂的作用.

  • 标签: 二氧化硅 碳热还原-氮化 添加剂 氮化硅
  • 简介:获得低粘度、高固相体积分数体悬浮液是陶瓷胶态成型的前提条件。为了提高BeO体悬浮液的固相体积分数,采用煅烧手段预处理体,研究煅烧温度(1200~1500℃)和煅烧时间(1~4h)对BeO体粒度、比表面积和烧结活性的影响规律,并研究相同固相体积分数(40%)条件下,煅烧对BeO悬浮液粘度的影响。结果表明:在煅烧过程中,体颗粒发生长大,比表面积和烧结活性均降低,温度的影响明显大于时间,且煅烧时间低于2h时影响不大,煅烧温度高于1300℃后体相关性能大幅下降;煅烧降低体比表面积,除去表面的水分等吸附物质,改善BeO体的表面性质,因此在相同固相体积分数(40%)条件下,体悬浮液的流动性能得到改善,从而煅烧可提高悬浮液的固相体积分数。

  • 标签: BEO 煅烧 比表面积 烧结活性 胶态成型
  • 简介:采用氢化钛代替钛,与镁粉混合高能球磨,研究球磨工艺参数对粉末性能的影响。采用机械合金化法这种非平衡态的粉末冶金方法,通过高能球磨粉末,提高Mg在Ti中的固溶度。利用激光粒度仪、X线衍射仪、扫描电镜等测试分析仪器表征粉末的性能。研究发现,随球磨时间延长,混合粉末的粒径逐渐变小,确定16h为最佳球磨时间。Mg的衍射峰随球磨时间增加而逐渐减弱,球磨8h后基本消失,表明球磨过程可促使Ti和Mg原子的合金化。选取4%(质量分数)的硬脂酸作为过程控制剂,能有助于减小颗粒尺寸且能有效防止粉末冷焊,粉末的收得率提高至73.3%。

  • 标签: 钛镁合金 球磨 过程控制剂 氢化钛 镁粉
  • 简介:利用具有平行流进液装置的新型电解槽,在电解液总流量为18L/min条件下,采用不同的进液模式制备电解铜,研究电解液进液方式对槽电压、电流效率、电解能耗和铜性能的影响,对电解法制备铜的节能降耗进行探索。结果表明,采用传统进液方式时能耗为3.01×10^6kJ/t,电流效率为94.42%,铜粉粒度为3.47μm,粒度分布集中;采用传统进液协同阴极双侧平行进液的方式能有效地降低电解过程的槽电压和电解能耗,并且随双侧平行进液流量增大,电流效率增加,能耗下降,但铜粉粒度增大。当双侧平行进液的喷液口流量为6L/min时较合适,电解能耗较低,为2.55×10^6kJ/t,铜的平均粒度为4.65μm,95%以上的铜粉粒度小于7.2μm,且铜具有明显的树枝状结构,与传统电解得到的铜性质相比没有明显差别;当喷液口流量进一步增大至9L/min(即单独采用双侧平行喷液方式)时,电解能耗进一步下降至2.17×10^6kJ/t,电流效率提高至96.95%,但铜粉粒度增加至45.76μm,且粒度分布出现明显的分级。

  • 标签: 电解铜粉 新型电解槽 电流效率 电解能耗 铜粉粒度