学科分类
/ 2
32 个结果
  • 简介:显而易见,他们是一群知道自己需要什么的人,或者说是基于非常了解自己而具备了自知之前的人。他们很自信,但并不狂妄,因为事业发展经历的风风雨雨,已经让他们的心态日渐平衡。

  • 标签: 红血球 奔跑 血管 发展经历
  • 简介:利用格子自动机模拟扩散现象,呈现了扩散的细节。文中对模拟过程的讨论和分析,可为格子自动机方法应用于大学物理虚拟实验提供参考,也为将其他复杂系统模拟方法应用于物理教学提供借鉴。

  • 标签: 格子气 FHP模型 扩散 虚拟实验
  • 简介:Tenax树脂吸附一热解吸是目前用于空气中挥发性有机物分析的较好方法之一。有机组分含量很低的气体样品,适宜采用Tenax-TA吸附剂吸附采样,对有机组分进行富集,以满足定性、定量分析的需要。为此,借助相色谱基本原理,研究了有机组分在吸附剂上的穿透特性以获得吸附剂采样的穿透体积和安全采样体积等基本参数。

  • 标签: 有机组分 穿透特性 吸附剂 采样体积 有机物分析 树脂吸附
  • 简介:通过分析液两相在多孔介质中的相互作用过程,建立了一套描述两相多组分非等温渗流的数学模型。所建立的控制方程中,既包括对流、弥散和源汇作用,也包括非达西流动、水气转变以及辐射传热等高温高压环境下的特殊物理过程。提供了一套完整的使控制方程封闭的本构关系,并推导了比能和比焓的计算公式。利用本文模型对地下爆炸气体的迁移过程进行了数值模拟。结果表明:与相渗流模型相比,该模型可以更合理地描述气体在地质介质中的输运行为。

  • 标签: 两相渗流 非等温流动 数学模型 本构关系 气体输运
  • 简介:介绍了一种加热去除阳极吸附气体的方法,并利用热传导方程对阳极加热过程进行了理论计算和分析。计算结果表明,要达到有效加热“强光一号”装置使用的阳极钽靶,电流幅值需为2~3.2kA,相应加热时间需为11~4S。

  • 标签: 轫致辐射 二极管 阳极 解吸附
  • 简介:随着脉冲功率技术的发展,源的功率水平、重复频率高低,电子束输出品质和系统集成度等要求越来越高。而传统技术具有局限性:如Marx发生器能量利用效率低;基于电感储能技术的装置由于断路开关随着导通时间增大断路抖动变大,不利于多系统集成;而脉冲变压器充电、脉冲形成线放电的装置体积很大。

  • 标签: 脉冲变压器 重复频率 功率源 长脉冲 脉冲功率技术 MARX发生器
  • 简介:利用里兹(Ritz)变分法求解氢分子离子H+2的键和基态能量E,并通过计算机来完成理论公式的推导与数值模拟

  • 标签: 氢分子离子H+2 键长 基态能量
  • 简介:以TiC14为源物质采用常压化学相沉积法制备了TiO2薄膜。用紫外光谱测定了膜的透过率,进而计算出折光率、消光系数、光学带隙能等光学参数。结果发现,在不同气流量、沉积温度为100~250℃的条件下制备的TiO2膜,其折射率在2.16~2.82范围内,消光系数在0.04×10-3~6.70×10-3范围内,光学带隙能在2.8~3.08eV范围内。在光催化作用下,TiO2膜用于处理苯酚溶液,苯酚的转化率高达54.05%。关键词##4化学相沉积(CVD);沉积率;折光率;消光系数;光催化更多还原

  • 标签: 化学气相沉积(CVD) 沉积率 折光率 消光系数 光催化
  • 简介:目的:为更好地评价填埋场覆盖层系统的闭气性能,建立水气耦合条件下的覆盖层中气体运移模型。在此基础上分析大气压强波动、渗透系数变化和对流扩散等因素耦合作用下填埋气在覆盖层中的运移规律。创新点:建立水气耦合条件下填埋气在覆盖层中的运移模型,分析多种因素耦合作用下填埋的运移过程,并比较对流运移和扩散运移的相对重要性。方法:1.通过理论分析,建立考虑压强、对流、扩散和非饱和情况的填埋耦合运移模型;2.通过试验拟合,得到大气压强波动的拟合经验公式(公式(22)),构建考虑压强波动下填埋多场耦合运移模型;3.通过仿真模拟,验证所建模型的可行性和正确性(图2),并分析包含大气雎强波动和渗透率等影响因素作用下填埋的运移规律(图6~8)。结论:1.覆盖层厚度从1米变化到2米,覆盖层中填埋的浓度变化可达31%;2.对于受大气压强波动影响较大的覆盖层系统(如1×10^3Pa),不能忽略压强波动对填埋气运移的影响;3.气体渗透系数在初期对气体运移有较大影响,随运移时间增加直至气体运移达到稳定状态,渗透牢的影响可以忽略(仅3%)。

  • 标签: 填埋气 覆盖层系统 非饱和土 气水运移 耦合模型
  • 简介:采用硝酸铟、硝酸铜和高分子材料作为静电纺丝的前驱体溶液,经过静电纺丝及高温煅烧,获得一维氧化铟/氧化铜复合纳米纤维,制成气体传感器,并对其敏性进行测试及分析。

  • 标签: 静电纺丝 纳米纤维 气敏特性
  • 简介:Ni/Al2O3催化剂上甲烷部分氧化制合成反应是在固定床流动反应装置上进行的。考察了催化剂的床层温度、反应压力、空速和原料配比对催化剂积炭产生的影响。实验结果表明,积炭速率随催化剂床层温度的升高而降低,当温度低于70℃时,积炭速率骤增:积炭总是发生在催化剂床层的下段;若空速超过3.0×105h-1,积炭速率随空速增加而明显降低。从FTIR实验结果可知,吸附在Ni/Al2O3催化剂表面上的CO,一部分歧化生成了CO2和C。综上所述,催化剂表面积炭主要来源于以下两个反应:2CO→C+CO2,CO+H2 =C+H2O

  • 标签: 甲烷氧化 合成气 积炭 炭生成反应