学科分类
/ 1
5 个结果
  • 简介:AbstractBackground:Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. It has been demonstrated that microRNA-145 (miR-145) is correlated with the progression of various cancers by regulating the expression of multiple target genes, especially a number of genes that regulate angiogenesis and proliferation. However, the underlying mechanisms of miR-145 in tumor angiogenesis of UM are still not well illustrated. Thus, we aimed to explore the potential target genes or pathways regulated by miR-145 in UM and the effect of miR-145 on invasion and angiogenesis.Methods:Totally, 24 choroid samples were collected in our study, including 12 UM samples and 12 normal uveal tissues. The expression of neuroblastoma RAS viral oncogene homolog (N-RAS), phosphorylated protein kinase B (p-AKT), and vascular endothelial growth factor (VEGF) in UM tissues and normal uveal tissues was analyzed using Western blotting analysis. Lentivirus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Transwell and endothelial cell tube formation assay were used to measure the effects of miR-145 on the invasion and angiogenesis of UM in vitro. The downstream target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase assay. BALB/c nude mice models were established to investigate the mechanisms of miR-145 on tumor growth and angiogenesis in vivo. Group data comparisons were performed using analysis of Student’s t test. A two-tailed P < 0.05 was considered as statistically significant.Results:The results of Western blotting analysis indicated that the expressions of N-RAS (1.10 ± 0.35 vs. 0.41 ± 0.36, t = 3.997, P = 0.012), p-AKT (1.16 ± 0.22 vs. 0.57 ± 0.03, t = 7.05, P = 0.001), and VEGF (0.97 ± 0.32 vs. 0.45 ± 0.21, t = 3.314, P = 0.008) in UM tumor tissues were significantly higher than those in normal uveal tissue. Luciferase assay demonstrated N-RAS and VEGF as downstream targets of miR-145. Moreover, tube formation assay revealed that miR-145-transfected human microvascular endothelial cell line formed shorter tube length (36.10 ± 1.51 mm vs. 42.91 ± 0.94 mm, t = 6.603, P = 0.003) and less branch points (350.00 ± 19.97 vs. 406.67 ± 17.62, t = 3.685, P = 0.021) as compared with controls. In addition, the numbers of invaded MUM-2B and OCM-1 cells with miR-145 overexpression were significantly lower than the controls (35.7 ± 3.3 vs. 279.1 ± 4.9, t = 273.75, P < 0.001 and 69.5 ± 4.4 vs. 95.6 ± 4.7, t = 21.27, P < 0.001, respectively). In vivo, xenografts expressing miR-145 had smaller sizes (miR-145 vs. miR-scr, 717.41 ± 502.62 mm3vs. 1694.80 ± 904.33 mm3, t = 2.314, P = 0.045) and lower weights (miR-145 vs. miR-scr, 0.74 ± 0.46 g vs. 1.65 ± 0.85 g, t = 2.295, P = 0.045).Conclusion:Our results indicated that miR-145 is an important tumor suppressor and the inhibitory strategies against N-RAS/VEGF signaling pathway might be potential therapeutic applications for UM in the future.

  • 标签: Uveal melanoma Vascular endothelial growth factor A Neuroblastoma RAS viral oncogene homolog microRNA-145 Angiogenesis
  • 作者: Li Bing Li Meng-Da Ye Jun-Jie Chen Zhe Guo Zi-Jian Di Yu
  • 学科: 医药卫生 >
  • 创建时间:2020-08-10
  • 出处:《中华医学杂志(英文版)》 2020年第06期
  • 机构:Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China,Ophthalmology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China,Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
  • 简介:AbstractBackground:Proliferative diabetic retinopathy (PDR) is a progressive stage of diabetic retinopathy featured by the formation of neovascular and proliferative membrane. Vascular endothelial growth factor (VEGF) acts as a pivot factor in the development of neovascularization. This study was to investigate the changes of intravitreal VEGF concentrations of severe PDR after intravitreal injection of conbercept (IVC) and its potential advantages to the following vitrectomy.Methods:This was a prospective, interventional, randomized controlled study. Sixty eyes (60 patients) with severe PDR and 20 eyes from 20 patients with rhegmatogenous retinal detachment complicated with proliferative vitreoretinopathy were enrolled in this study. PDR eyes were randomly assigned to three groups by sortation randomization method with 20 eyes in each based on the interval of preoperative IVC (group A: 7 days, group B: 14 days, group C: non-IVC). Another 20 eyes without diabetes were enrolled as the non-diabetic control group (group D), receiving PPV directly. Vitreous specimens of all 80 patients were collected and evaluated afterwards. The intravitreal VEGF concentration of the four groups, and the total surgical time and the intraoperative bleeding rate of the PDR groups were recorded.Results:The mean intravitreal VEGF concentrations of groups A-D were 66.6 ± 43.3, 93.1 ± 52.3, 161.4 ± 106.1 and 1.8 ± 1.2 pg/mL, respectively. It increased significantly in PDR patients (groups A, B and C) (P = 0.002, <0.001, and <0.001, respectively). PDR patients with preoperative IVC (groups A and B) presented significantly lower VEGF concentrations (P < 0.001 and 0.001), intraoperative bleeding rates (P= 0.004) and total surgical time (P < 0.001, P= 0.003) compared with group C. No statistical differences were presented between groups A and B on the three parameters.Conclusion:Seven days and 14 days of preoperative IVC are equally efficient and safe for the vitrectomy of severe PDR patients through decreasing vitreous VEGF concentrations, intraoperative bleeding rate and total surgical times.

  • 标签: Anti-vascular endothelial growth factor Diabetic retinopathy/proliferative diabetic retinopathy Vitreous humor Vascular endothelial growth factor
  • 简介:AbstractBackground:Vascular endothelial dysfunction is considered a key pathophysiologic process for the development of acute lung injury. In this study, we aimed at investigating the effects of unfractionated heparin (UFH) on the lipopolysaccharide (LPS)-induced changes of vascular endothelial-cadherin (VE-cadherin) and the potential underlying mechanisms.Methods:Male C57BL/6 J mice were randomized into three groups: vehicle, LPS, and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received subcutaneous injection of 8 U UFH 0.5 h before LPS injection. The lung tissue of the mice was collected for assessing lung injury by measuring the lung wet/dry (W/D) weight ratio and observing histological changes. Human pulmonary microvascular endothelial cells (HPMECs) were cultured and used to analyze the effects of UFH on LPS- or tumor necrosis factor-alpha (TNF-α)-induced vascular hyperpermeability, membrane expression of VE-cadherin, p120-catenin, and phosphorylated myosin light chain (p-MLC), and F-actin remodeling, and on the LPS-induced activation of the phosphatidylinositol-3 kinase (PI3K)/serine/threonine kinase (Akt)/nuclear factor kappa-B (NF-κB) signaling pathway.Results:In vivo, UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes (neutrophil infiltration and erythrocyte effusion, alveolus pulmonis collapse, and thicker septum), decreased the lung W/D, and increased protein concentration (LPS vs. LPS + UFH: 0.57 ± 0.04 vs. 0.32 ± 0.04 mg/mL, P = 0.0092), total cell count (LPS vs. LPS + UFH: 9.57 ± 1.23 vs. 3.65 ± 0.78 × 105/mL, P= 0.0155), polymorphonuclear neutrophil percentage (LPS vs. LPS+ UFH: 88.05% ± 2.88% vs. 22.20% ± 3.92%, P = 0.0002), and TNF-α (460.33 ± 23.48 vs. 189.33 ± 14.19 pg/mL, P = 0.0006) in the bronchoalveolar lavage fluid. In vitro, UFH pre-treatment prevented the LPS-induced decrease in the membrane expression of VE-cadherin (LPS vs. LPS + UFH: 0.368 ± 0.044 vs. 0.716 ± 0.064, P = 0.0114) and p120-catenin (LPS vs. LPS + UFH: 0.208 ± 0.018 vs. 0.924 ± 0.092, P = 0.0016), and the LPS-induced increase in the expression of p-MLC (LPS vs. LPS + UFH: 0.972 ± 0.092 vs. 0.293 ± 0.025, P = 0.0021). Furthermore, UFH attenuated LPS- and TNF-α-induced hyperpermeability of HPMECs (LPS vs. LPS + UFH: 8.90 ± 0.66 vs. 15.84 ± 1.09 Ω·cm2, P = 0.0056; TNF-α vs. TNF-α + UFH: 11.28 ± 0.64 vs. 18.15 ± 0.98 Ω·cm2, P = 0.0042) and F-actin remodeling (LPS vs. LPS + UFH: 56.25 ± 1.51 vs. 39.70 ± 1.98, P = 0.0027; TNF-α vs. TNF-α + UFH: 55.42 ± 1.42 vs. 36.51 ± 1.20, P = 0.0005) in vitro. Additionally, UFH decreased the phosphorylation of Akt (LPS vs. LPS + UFH: 0.977 ± 0.081 vs. 0.466 ± 0.035, P = 0.0045) and I kappa B Kinase (IKK) (LPS vs. LPS + UFH: 1.023 ± 0.070 vs. 0.578 ± 0.044, P = 0.0060), and the nuclear translocation of NF-κB (LPS vs. LPS + UFH: 1.003 ± 0.077 vs. 0.503 ± 0.065, P = 0.0078) in HPMECs, which was similar to the effect of the PI3K inhibitor, wortmannin.Conclusions:The protective effect of UFH against LPS-induced pulmonary endothelial barrier dysfunction involves VE-cadherin stabilization and PI3K/Akt/NF-κB signaling.

  • 标签: Acute lung injury Cadherin Capillary permeability Heparin
  • 简介:AbstractPurpose:Severe damage to the femoral head in patients with osteonecrosis has a high impact on morbidity. Despite early diagnosis, the treatment outcome is still unsatisfactory. This study aimed to explore the expression of vascular endothelial growth factor (VEGF) and cyclic guanine monophosphate (cGMP) serum level as the risk factors of femoral head osteonecrosis in alcohol-exposed Wistar rats.Methods:This was an experimental study using randomized post-test only control group design, with samples using 10-14 weeks Wistar male rats. Rats were then divided into 6 groups: 3 groups without intervention, and 3 groups with intervention using 40% alcohol given perorally. Each one group from intervention and control group was euthanized by the end of the week for 3 consecutive weeks. Proximal femurs were examined under microscope for osteonecrosis, immunohistochemically for VEGF, and blood serum for cGMP levels.Results:VEGF expression in the femoral head of alcohol-exposed Wistar rats was lower than those not exposed to alcohol (p < 0.005). Blood serum cGMP levels of alcohol-exposed Wistar rats were higher than those not exposed to alcohol (p < 0.005). The number of necrotic osteocytes in the femoral head of Wistar rats exposed to alcohol was greater than those not exposed to alcohol (p < 0.005). There are significant differences between VEGF, cGMP levels, and number of necrotic osteocytes in the control group and treatment at 1st, 2nd, and 3rd week (p < 0.005).Conclusions:Based on the result of this study, VEGF and cGMP may be considered as diagnostic biomarkers for alcohol-induced femoral head osteonecrosis.

  • 标签: Cyclic guanosine monophosphate Osteonecrosis Vascular endothelial growth factor
  • 简介:AbstractBackground:Endothelial cells play a key role in the cytokine storm caused by influenza A virus. MicroRNA-155 (miR-155) is an important regulator in inflammation. Its role in the inflammatory response to influenza A infection, however, has yet to be elucidated. In this study, we explored the role as well as the underlying mechanism of miR-155 in the cytokine production in influenza A-infected endothelial cells.Methods:Human pulmonary microvascular endothelial cells (HPMECs) were infected with the influenza A virus strain H1N1. The efficiency of H1N1 infection was confirmed by immunofluorescence. The expression levels of proinflammatory cytokines and miR-155 were determined using real-time polymerase chain reaction. A dual-luciferase reporter assay characterized the interaction between miR-155 and sphingosine-1-phosphate receptor 1 (S1PR1). Changes in the target protein levels were determined using Western blot analysis.Results:MiR-155 was elevated in response to the H1N1 infection in HPMECs (24 h post-infection vs. 0 h post-infection, 3.875 ± 0.062 vs. 1.043 ± 0.013, P = 0.001). Over-expression of miR-155 enhanced inflammatory cytokine production (miR-155 mimic vs. negative control, all P < 0.05 in regard of cytokine levels) and activation of nuclear factor kappa B in infected HPMECs (miR-155 mimic vs. negative control, P = 0.004), and down-regulation of miR-155 had the opposite effect. In addition, S1PR1 was a direct target of miR-155 in the HPMECs. Inhibition of miR-155 enhanced the expression of the S1PR1 protein. Down-regulation of S1PR1 decreased the inhibitory effect of the miR-155 blockade on H1N1-induced cytokine production and nuclear factor kappa B activation in HPMECs.Conclusion:MiR-155 maybe modulate influenza A-induced inflammatory response by targeting S1PR1.

  • 标签: MicroRNA-155 Sphingosine 1-phosphate receptor 1 Influenza A virus Endothelial cells