学科分类
/ 1
18 个结果
  • 简介:制作了含玻璃布和不含玻璃布的PTFE/陶瓷填充的覆铜板。该覆铜板具有较低的热膨胀系数和稳定的介电性能

  • 标签: PTFE 覆铜板 高频 CTE
  • 简介:采用声化学法研究Zn掺杂对氧化镉纳米结构生长过程的影响.纳米颗粒的X射线衍射(XRD)谱表明,所制备的CdO样品为立方结构.场发射扫描电子显微镜(FESEM)图像显示,样品用Zn原子掺杂时,其形貌发生变化,粒度变小.利用室温光致发光(PL)和紫外?可见光谱(UV-Vis)分析技术研究样品的光学性质,结果表明,不同的发射带由不同的跃迁引起,CdO能带隙由于掺杂而增大.对纳米结构电学性质的研究表明,Zn掺杂导致光生载流子密度提高,从而使得纳米结构的导电性提高,光照射纳米结构所产生的光电流亦增大.根据本研究的结果,Zn掺杂可以改变CdO纳米结构的物理性质.

  • 标签: Zn掺杂CdO纳米结构 超声法 光学性能 电学性能
  • 简介:通过在零件上取小试样进行拉伸及拉-拉疲劳性能测试,分析研究热等静压+挤压+等温锻(EX)及直接热等静压(HIP)两种工艺在模拟服役条件下对FGH95合金力学性能的影响。结果表明,EX试样抗拉强度的稳定性高于HIP试样。从线性回归应力寿命(S-N)曲线中可以得到,在给定的循环载荷条件下,EX试样失效前承受的循环次数更多,分散性更小。断口断裂特征表明,EX工艺条件下合金以塑性断裂机制为主,而HIP工艺条件下以脆性断裂机制为主。

  • 标签: FGH95合金 小试样 力学性能 分散性 断裂特征
  • 简介:提出一种管材成形新工艺:固溶处理→颗粒介质内高压成形→人工时效。通过热处理工艺调整合金变形前后的力学性能,应用颗粒介质内高压成形技术实现管件塑性成形,以期建立一种工艺实施简便、设备要求较低、产品设计灵活的高强铝合金管件加工方法。结果表明,固溶温度560℃且保温时间120min时,合金伸长率提高了313%,但强度和硬度大幅减低;对合金进行固溶后时效处理,当人工时效温度180℃且保温360min时,合金塑性下降,强度和硬度等性能指标恢复至固溶前状态,确保成形零件具备母材力学性能。此工艺方法使AA6061挤压管材的最大胀形率提高了25.5%,管件材料性能达到了原材料的性能指标。

  • 标签: AA6061合金 内高压成形 热处理 强化机制
  • 简介:采用非自耗真空电弧熔炼炉制备不同Zr含量的Ti43Al与Ti47Al合金,研究该合金的显微组织和力学性能的变化。结果表明:Zr对Ti43Al合金的组织形态无明显影响,Ti47Al合金则由枝晶组织演变成等轴晶组织。Zr元素的添加能细化晶粒。Zr能促进γ相的形成,Zr在Ti43Al和Ti47Al合金γ相中的固溶度分别为12.0%和5.0%(摩尔分数)。经过分析,Ti43Al-xZr中的γ相由β相转化而来,Ti47Al-xZr中的γ相则由α相转化而来。细晶强化和固溶强化作用使压缩强度提高;然而,严重的显微偏析会导致力学性能下降。Zr元素极大的固溶度对合金的塑性具有不利的影响。Ti43Al-xZr和Ti47Al-xZ合金的最大压缩强度分别为1684.82MPa(x=5.0%)和2158.03MPa(x=0.5%),而Ti43Al-xZr合金的压缩应变无明显变化,Ti47Al-xZr合金的最大压缩率为35.24%(x=0.5%)。两组合金均呈脆性断裂特征。

  • 标签: TiAl二元合金 ZR 显微组织演变 相转变 压缩性能
  • 简介:通过采用旋转流变仪对覆铜板用半固化片的无卤环氧树脂体系化学流变特性进行研究发现:添加酚氧树脂、活性橡胶以及增加配方中填料含量均可以使提升体系的最低熔融粘度、使半固化片流变窗口变宽;添加橡胶改性环氧树脂,配方的最低熔融粘度和流胶窗口均无明显改善。

  • 标签: 无卤覆铜板 半固化片 环氧树脂 流变特性
  • 简介:剪切冲孔试验(SPT)适用于表征各种材料的剪切性能,尤其是受到体积限制的材料。本文研究AZ80镁合金的屈服和极限剪切强度与各种参数(间隙、模具直径和样品厚度)之间的关系。此外,基于Mohr-Coulomb理论,在剪切冲孔试验中引入了相对最优条件。结果表明,合适的间隙/片材厚度比范围为2%~10%。为了在剪切冲孔试验中提供单剪切应力状态,需要选择的模具直径/片材厚度比为2:1~10:1。基于Mohr-Coulomb理论预测,得到室温剪切冲孔试验的最优参数为:样品厚度0.5mm,间隙25μm,模具直径2mm。通过铸态AZ80镁合金的剪切屈服强度换算得到其抗拉和抗压屈服强度的平均换算系数分别为1.70和3.09。

  • 标签: 剪切冲孔试验 Mohr-Coulomb理论 剪切性能 AZ80镁合金 数值模拟
  • 简介:在60MPa压力,5个不同的烧结温度下将ZnO?聚苯胺?聚乙烯混合粉末压制成复合陶瓷圆片,研究烧结温度的变化对其电物理性能和显微组织的影响。结果显示,烧结温度从30°C升高至120°C,击穿电压从830V降低至610V;继续提高烧结温度,击穿电压反而升高。随着烧结温度的升高,界面电压势垒的变化与击穿电压的变化相反。样品的泄露电流很低,说明材料具有低的降解速率。烧结温度越高,非线性系数变得越小。此外,各样品均有迟滞现象,随烧结温度升高至120°C,电滞回线降低;当温度继续升高时,电滞回线变宽。紫外光谱的结果显示,有3个杂质能级,且随烧结温度的升高而降低。扫描电镜的结果显示,复合材料显微组织中含有晶粒和晶界,晶界的电阻率是影响材料的压敏特性随烧结温度变化的主要因素。

  • 标签: ZNO 电性能 烧结温度 压敏电阻 复合材料 显微组织
  • 简介:分析DZ408第一代定向凝固镍基高温合金的固溶温度、预处理升温阶梯对叶片残余共晶含量的影响,探讨不同热处理制度对叶片残余共晶及力学性能的影响。结果表明:随着固溶温度的升高和增加预处理阶梯,残余共晶含量减少;固溶温度达初熔温度时,合金的中温持久性能降低,较多的残余共晶影响合金高温稳定性。研究给出了DZ408合金的新热处理制度。

  • 标签: DZ408合金 残余共晶 固溶温度 预处理阶梯 力学性能
  • 简介:分别采用液态挤压铸造和半固态挤压铸造工艺成形ZL104铝合金连杆,研究不同工艺参数对连杆的显微组织及力学性能的影响规律。结果表明:与传统液态挤压铸造相比,半固态挤压铸造连杆的抗拉强度和伸长率分别提高了22%和17%。半固态挤压铸造过程中,随着重熔温度的增加,平均晶粒尺寸和形状因子都增大;随着模具预热温度的升高,平均晶粒尺寸增大,形状因子先增加后减小;这两种情况下连杆的抗拉强度和伸长率都先增加后减小。但随着挤压压力的提高,平均晶粒尺寸减小,且形状因子增大,连杆的力学性能明显提高。此外,成形半固态挤压铸造连杆的最佳重熔温度、挤压压力及模具预热温度分别为848K、100MPa及523K。

  • 标签: 铝合金 半固态挤压铸造 半固态显微组织 抗拉强度 伸长率 连杆
  • 简介:采用扩散偶实验方法研究Fe含量对Ti6Al4V合金显微组织和性能的影响。通过制作Ti6Al4V-Ti6Al4V20Fe扩散偶,在1000°C经600h扩散退火,在一个样品内获得具有连续成分梯度的合金。结合电子探针、扫描电镜和纳米压痕,确定Ti6Al4VxFe合金成分-组织-硬度的关系。当合金中Fe含量增加到5%(质量分数)时,时效状态下合金中的α相体积分数降低到55%,同时合金具有最高的硬度,Ti6Al4V5Fe合金将是Ti6Al4VxFe体系中最具前景的合金。HAADF-STEM和XRD结果表明,Ti6Al4V5Fe合金在固溶淬火阶段生成纳米尺寸α''层片,这些亚稳的α''层片在随后的时效过程中逐渐长大,并作为α相的形核核心,形成稳定α相。

  • 标签: 扩散偶 Ti6Al4VxFe合金 成分 组织 硬度 HAADF-STEM
  • 简介:搅拌摩擦焊接(FSW)是一种固态焊接方法,它能够焊接普通熔焊过程难以焊接的材料;且与熔焊相比,具有高效节能和环境友好的特点。尽管FSW与熔焊相比有更多的优点,但是FSW过程中的热循环会溶解或者粗化热处理铝合金中的沉淀强化相,使接头软化,从而导致其力学性能下降。水下搅拌摩擦焊接(UFSW)是一种可以克服这些缺陷的方法。这种方法适合于在焊接过程中对热敏感的合金,且已广泛用于热处理铝合金。本文对UFSW的研究现状和发展提供了全面的文献综述。与FSW进行对比,从不同角度讨论和总结UFSW的重要性;并对材料流动、温度变化、工艺参数、显微组织和力学性能等基本原理进行详细阐述。结果表明,与FSW相比,UFSW是一种可以改善接头强度的新方法。

  • 标签: 搅拌摩擦焊 熔焊 力学性能 显微组织 水下搅拌摩擦焊接
  • 简介:用机械合金化和热压法制备可降解的Mg-6Al-4Zn金属植入体。通过X射线衍射分析、透射电镜、压缩试验、浸泡试验、电化学测试和MTT比色法研究添加1%Si(质量分数)对Mg-6Al-1Zn合金显微组织、力学性能、生物腐蚀行为和细胞毒性的影响。结果显示,添加1%Si后,Mg-6Al-1Zn中形成了细小的多边形Mg2Si相,材料的抗压强度、伸长率和耐腐蚀性能提高,且骨肉瘤(Saos-2)细胞的细胞活性提高。根据MTT测试结果,释放出的镁离子没有细胞毒性。因此,添加1%Si提高了Mg-6Al-4Zn作为可降解植入体的综合性能

  • 标签: 镁基合金 机械合金化 力学性能 腐蚀速率 细胞活性
  • 简介:研究一种铸造镍基合金(IN617B合金)在固溶处理和长期时效处理过程中的相析出行为和拉伸性能。在铸态的组织中,Ti(C,N)、M6C和M23C6为主要析出相,而经过固溶处理后,除少量Ti(C,N)残余外,绝大部分碳化物固溶到基体中。在700°C长期时效过程中,合金中相的析出行为主要包括3个方面:(1)晶界处M23C6碳化物的形貌由膜状转变成颗粒状,同时由于界面能的降低和元素向晶界的扩散,颗粒碳化物逐渐粗化;(2)晶内棒状M23C6碳化物具有择优生长方向[110],并与基体γ之间存在共格关系;(3)γ?颗粒可以通过限制碳化物形成元素的扩散来阻碍晶内M23C6碳化物粗化。在时效5000h后,合金的抗拉强度明显增加,而合金的塑性明显下降。该合金具有稳定的显微组织,从而保证其在长期时效过程中具有优异的拉伸性能

  • 标签: 镍基高温合金 相析出 碳化物 γ'相 拉伸性能
  • 简介:室温下用溶胶凝胶自蔓延燃烧法合成平均尺寸约50nm的仿立方体结构KxNa1-xNbO3纳米粉体并制备成陶瓷,对陶瓷进行相结构、显微组织以及电性能的表征。XRD结果表明,KxNa1-xNbO3陶瓷为纯的钙钛矿结构,且K0.5Na0.5NbO3陶瓷具有正交相和单斜相的混合相结构。SEM结果表明,所有陶瓷样品均为孪晶分布,且孪晶分布中小晶粒数随K+含量的增加而减少。在室温下,晶粒尺寸均匀且具有最大密度的K0.5Na0.5NbO3陶瓷具有较优异的电性能:εr=467.40,tanδ=0.020,d33=128pC/N,kp=0.32。K0.5Na0.5NbO3陶瓷的优良电性能说明溶胶凝胶自蔓延燃烧法合成的K0.50Na0.50NbO3粉体性能较好,且制备的陶瓷满足无铅压电材料应用。

  • 标签: 溶胶凝胶自蔓延燃烧法 KxNa1-xNbO3 相结构 显微组织 电性能
  • 简介:采用固相烧结方法制备Mg2Ni0.7M0.3(M=Al,Mn,Ti)合金。利用X射线衍射仪、扫描电镜和扫描透射电镜对合金的相组成和显微组织进行系统表征。结果发现,Mg2Ni0.7M0.3合金中形成了具有面心立方结构的金属间化合物Mg3MNi2,其与Mg和Mg2Ni共存;且M原子半径与Mg原子半径越接近,越有利于Mg3MNi2的形成。采用Sievert和Tafel方法对Mg2Ni0.7M0.3合金的储氢性能和耐腐蚀性能进行研究。Mg2Ni0.7M0.3合金的吸/放氢性能得到明显改善。Mg2Ni0.7Al0.3、Mg2Ni0.7Mn0.3和Mg2Ni0.7Ti0.3合金的脱氢反应的激活能较Mg2Ni的激活能明显降低,分别为-46.12、-59.16和-73.15kJ/mol。与Mg2Ni合金相比,Mg2Ni0.7M0.3合金的腐蚀电位向正方向移动,如Mg2Ni0.7Al0.3合金(-0.529V)与Mg2Ni合金(-0.639V)的腐蚀电位差为0.110V,表明添加Al、Mn和Ti能使合金的耐腐蚀性能得到显著提高。

  • 标签: MG2NI Mg3MNi2 吸氢动力学 脱氢激活能 耐腐蚀性能
  • 简介:采用一种新型高通量实验方法,实现对Ti-5553合金(Ti-5Al-5Mo-5V-3Cr,质量分数,%)在600~700℃范围内的连续温度梯度热处理。实验通过对圆台形样品进行直流电加热,由于截面面积不同而导致电流热效应不同,从而使样品表面温度呈梯度变化。采用端淬实验实现Ti-5553合金的连续冷却速率变化,研究合金在不同热处理条件下的显微组织演变和力学性能。结果表明:Ti-5553合金的伪调幅分解温度为(617±1)℃,析出的α相尺寸在300nm左右;合金在伪调幅分解温度下时效4h达到最高的硬度。因此,这种高通量方法能够快速准确地判断合金中相转变温度以及相应的组织转变。

  • 标签: Ti-5Al-5Mo-5V-3Cr合金 高通量实验方法 伪调幅分解 温度梯度 显微组织 力学性能
  • 简介:采用沉淀和水热合成方法制备还原氧化石墨烯负载氧化钴纳米催化剂.采用XRD、Raman光源、SEM、TEM、氮气吸附、UV-Vis、XPS和H2-TPR等测试手段对所合成的催化剂进行表征.结果表明:颗粒尺寸均一的钴氧化物纳米颗粒均匀地分散在还原氧化石墨烯表面,所合成的材料具有较大的比表面积和均一的孔径分布.采用连续流动固定床微反-色谱装置对所合成的杂化催化剂对一氧化碳氧化的催化性能进行研究后发现,含还原氧化石墨烯质量分数为30%的催化剂具有最高的催化活性,能实现一氧化碳在100℃时的完全氧化.

  • 标签: 还原氧化石墨烯 氧化钴 催化剂 一氧化碳氧化 催化性能