薄壁类金属零件数控加工工艺分析

(整期优先)网络出版时间:2023-09-05
/ 2

薄壁类金属零件数控加工工艺分析

南龙浩

哈尔滨飞机工业集团有限责任公司 黑龙江省哈尔滨市 150000

摘要:机械制造行业中,经常遇到圆环薄壁型金属零件,此类零件壁厚很薄(2~8mm)、尺寸精度和表面质量要求高、外径尺寸较大(300~800mm)、结构复杂、刚性差,装夹起来非常不便,极易弄伤零件表面,因此,制造难度很大,一次制造合格率很低,即使采用先进的数控车床等设备,在使用数控车床加工时容易引起产品总成变形从而影响精度。为此,对国内外现有的加工方法进行举例分析,并提出一种简便易行、成本低廉的加工方法。

一、国内外现有的加工方法与不足

1. 国内的加工方法与不足

如加工一种圆环薄壁型零件,其外圆公差0.06mm,同轴度要求0.1mm,零件最薄处壁厚仅2.25mm,外圆尺寸达500mm,外圆表面上还有多处斜槽,国内常见的加工方法是:数控车床三爪卡盘装夹并进行校正,然后分别精车外圆和内孔;但精车外圆和内孔时,工件因材料内应力变化而容易产生变形,产品的最终尺寸出现不同程度的变化而导致超差,却又无法返修,超差较多的只能直接报废。另外,加工外圆和内孔后,还需要使用加工中心来加工斜槽和侧孔,此时,产品外形已经精加工到位,外圆面不能过度受力,不能使用软爪校正,任何的夹紧力对于薄壁件来说都有可能使其变形。因此,现有的加工方法既对于加工者的操作经验要求很高,同时,加工成品率又较低,导致要么产品产量上不去,要么因关键零件无法加工而不能制造整机部件或成套设备。

2. 国外的加工方法与不足

国外目前的做法有的是通过提高原材料质量,包括锻造、热处理等性能参数,从而改善材料稳定性,降低加工变形性;或通过增加零件的加工工序,即先保证外圆和内孔的尺寸精度基本到位后,然后加工其他槽、孔等局部结构,最后通过修正表面质量使尺寸和表面质量符合要求。但上述做法都会明显增加零件的制造成本和制造周期,直接导致零件或所应用的整机价格上升,产品的性价比下降。

二、一种新型加工方法

在经过长期的经验积累和技术攻关,在不增加其他专用加工设备的前提下,充分利用数控车床、加工中心等自动化加工装置,应用专门设计的三个工装,即可以精确加工圆环薄壁型关键金属零件。具体方法是:在现有使用数控车床加工的方法上,设计出三套工装,分别是一套涨套内孔工装配合精加工外圆,一套包夹外圆工装配合精加工内孔,一套加工槽的工装,以图1中的工件为例,其加工工艺步骤是:

(1)使用数控车床半精加工,工件的外圆和内孔留有余量;(2)上涨套内孔工装精加工外圆:涨套内孔工装的涨套外圆尺寸与半精加工后的工件内孔尺寸是配合尺寸,且涨套是开口的,涨套内孔工装放进工件内孔之后,通过涨套内孔工装上的螺母挤压使得涨套膨胀,从而起到涨紧作用,然后精加工外圆;(3)上包夹外圆工装精加工内孔:该工装的套管均分为三部分,每部分分别通过卡盘软爪固定在卡盘上,套管的内孔尺寸与工件的外圆尺寸是配合尺寸,在工装松弛状态下,将工件装夹在套管内,紧固卡盘软爪,包紧工件,然后精加工内孔;

(4)上加工槽的工装:该工装的定位板和支撑件支撑工件,定位板上设有螺栓孔,通过内六角螺柱将工件的中部夹紧固定,支撑件对工件的端部进行支撑,该工装确定加工槽的位置是通过定位板来完成,定位板上设有若干定位孔,定位板前还设有与其垂直的定位销,定位孔的精度与定位销相配,定位板配合定位销每旋转一个孔的角度,便可以确定一个槽的加工位置,进而对薄壁工件进行槽的加工。

三.薄壁类金属零件数控加工注意事项

1.提高薄壁零件的工艺刚度

薄壁零件数控铣削加工中,增大薄壁零件的刚度与强度,能够有效的增强薄壁零件的抗应力能力,从而减小加工装夹变形与加工变形。增强薄壁零件强度大的方式有:①采用浇液、浇灌石磨等方式,在加工件内部填充一些容易去除的物质,从而增大零件壁厚,提高刚度;②采用具有较高弹性模量的材料,能够有效的提升零件刚度,从而避免受力变形;③因为薄壁零件的工艺刚度与加工方式有关,因此提升工装与工件之间的有效加工精度与表面光洁度,能够提升接触刚度,从而增强材料的刚度。

2.优化走刀策略和加工顺序

薄壁零件数控铣削加工的加工顺序以及走到策略,对于零件的结构具有直接的影响,为了避免材料变形,应该做好如下的质量控制措施。首先设计合理的加工顺序,可以有效地减小加工变形。选择良好加工顺序的总体原则,是在保证工件方便、可靠定位和利于工件装夹的前提下,随着加工的进行,最大限度地减少自身刚度和工艺刚度的降低,使加工过程在刚性较好的状态下进行,以减小加工变形。其次刀具的选择,加工中,刀具材料以及曹局结构对切削具有关键的影响,因此所选择的刀具,应该满足高硬度、耐磨性以及经济性的相关要求,同时需要具备耐热性以及良好的高温力学稳定性。对于薄壁材料来说,需要根据加工条件选择合适的刀具材料,并且保证刀具满足切削速率的要求,尺寸结构满足机床的要求。当前硬质合金已经成为刀具材料的主流,为了制造具有复杂结构的精密刀具,应该选择具有良好切削性能以及耐磨能力强的高硬度刀具材料。而刀具结构需要根据零件的结构选择,由于零件的刚性差,因此刀具应该满足切削力与切削精度的要求,从而保证零件加工质量。

3.制定合理的工艺路线

薄壁零件数控铣削加工的工艺流程以及工艺参数的设定,对于零件的变形具有重要的影

响,为了有效的控制加工变形,应该在加工过程中,保证夹具的稳定加工,从而尽可能的降低切削力与夹装变形。夹具的夹紧力必须按照最大切削量进行计算,从而确定夹紧力的值,在加工过程中,应该采用粗加工—精加工的工序进行加工,因为粗加工留下较大的切削余量,因此需要有效的进行热处理工序,消除零件残余应力,从而提高零件的稳定性。薄壁材料在加工过程中,应该悬着合理的切削力、合理的装夹方案以及冷却方式,从而对材料的加工因素进行有效控制,避免加工过程造成的材料变形。

4.选取合理切削参数,高效稳定地加工

在确定切削参数时,通常根据加工品质及刀具和工具材料,先根据铣刀切削速度和主轴直径确定主轴转速,然后参阅手册选择铣刀每齿进给量,再由铣刀刃数代入式计算得到刀具的进给速度。

5.薄壁零件的高速加工

薄壁零件高速铣削的优点是切削力小,所以在加工薄壁零件时工件产生的让刀变形相应的减小,易于保证零件的尺寸精度和形位精度;高速切削时由于切削热大部分由切屑带走,工件温度升不高,工件的热变形小,这对于减小薄壁零件的变形非常有利;刀具的激振频率提高使激振频率避开薄壁结构工艺系统的振动频率范围,从而避免切削振动,实现平稳切削;刀具伸长度短,刚性好。可见高速加工确实具有相当的优越性。但它也存在一定的缺点,单个刀具成本比较高,机床系统要求高,刀具平衡性要求高,主轴寿命比较短。较硬的金属就不适合高速切割加工的方法。

四、应用效果

通过在实际制造中应用此方法,有效解决了广泛的圆环薄壁类金属零件的加工难题,降低了对加工者经验和技术的要求,并大幅提高了加工精度和成品率(外圆公差由原来的0.15提高到0.05、成品率由60%提高到90%)。与国内外现有技术相比,没有通过另购专用大型

高精度设备或另设计制造复杂工装来实现该类零件的精密加工,也不像传统加工方法那樣对加工操作人员的技术经验要求很高,只需应用简单的几套工装和加工工序即可,成本低、便于实施和推广。

五、结束语

高精度圆环薄壁型金属零件使用范围非常广,从通用机械到专用机械再到特种机械,从零件到部件再到成套设备,这类零件尺寸和形状精度要求高、表面质量要求高、壁厚又很薄,加工难度非常大,产品的一次制造合格率很低,直接影响整机设备的生产效率和交货期;如果为此而进口专门的高精度高性能加工设备则将耗费更多的资金,并因此提高产品的制造成本和销售价格,导致产品性价比不高,竞争力差。
参考文献:

[1] 曹志峰, 朱超奇, 涂杰,等. 浅谈数控铣削薄壁类零件加工工艺[J]. 工程机械与维修, 2022(4):3.

[2] 王建新, 袁方, 滕玉光. 应力环类薄壁零件的数控铣削加工[J]. 中国科技博览, 2014.