柔性直流输电线路故障处理与保护技术评述

(整期优先)网络出版时间:2023-03-14
/ 2

柔性直流输电线路故障处理与保护技术评述

胡硕齐

内蒙古超特高压公司锡林郭勒盟输电工区内蒙古锡林浩特市026000

摘要:由于柔性直流输电系统调节方式和自身结构的特殊性,直流线路的故障电流具有上升速度快、峰值大的特点,极易损坏换流器件和设备绝缘,且柔性直流系统无法通过调节触发角实现故障自清除。因此,对直流线路故障处理和保护提出了更高要求。对于柔性直流线路故障,不仅需要快速且可靠的线路保护对故障进行识别,也需要相应的处理措施和手段对故障后的电流进行有效限制,以减少故障冲击电流对换流器件、直流线路自身以及系统的损害。基于柔性直流输电线路的故障特征,从直流线路故障电流抑制、减少故障影响、线路保护原理等方面,系统地介绍了国内、国外柔性直流输电线路故障处理与保护技术的现状和发展。重点分析了几种辅助电路、新型换流器拓扑和直流输电结构,以及直流断路器在处理直流线路故障方面的性能。探讨了目前柔性直流输电线路故障处理和保护亟须解决的关键问题以及未来进一步的研究方向。

关键词:柔性直流输电;系统结构;故障特征;故障处理;直流线路保护

1柔性直流输电的系统

两端的换流站都是利用柔性直流输电,由换流电和换流变压设备,换流电抗设备等进行组成。其中最为关键的核心部位是VSC,而它则是由流桥和直流电容器共同组成的。系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。这主要是由于浮动数值和相位都可以利用脉宽调制技术来进行智能化调解。因此,VSC的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节。

2柔性直流系统的故障类型

以目前正在建设的张北柔性直流电网为例,该工程采用架空输电线路,与直流电缆相比,其故障概率更高。按照故障区域划分,柔性直流电网故障大致可以分为交流系统故障、换流器内部故障和系统直流侧故障。换流器内部故障又可细分为站内母线故障、阀短路故障、桥臂电抗器故障以及最常见的子模块故障等。柔性直流输电具有输送容量大、电压等级高的特点,故MMC(模块化多电平换流器)每个桥臂串联的子模块数量较多,从而增加了子模块故障的概率。在柔性直流系统的建设中,为确保系统具有足够的容错性和充足的安全裕度,通常都会在每一个桥臂上串联适量的冗余子模块。直流侧故障可细分为直流线路断线故障、直流线路短路故障和换流器闭锁故障。在单个MMC中,因为直流侧采用单级输电,故直流侧线路故障以单极接地故障为主。而在真双极系统中,单级接地故障则相当于伪双极系统中的级间短路故障,通常由树枝接触或雷电引发,多属于暂时性故障,但是因其故障传播速度快、影响范围广、解决难度大,成为阻碍柔性直流电网发展的技术难题。真双极系统的双极短路故障则更为严重,相当于交流系统的三相短路故障。

3柔性直流输电网故障保护的难点

(1)系统故障电流升高速度极快,通常在故障出现之后10ms以内电流已经提高至稳态电流水平。(2)稳态短路存在很高电流值,系统短路电流通常比额定值高出几十倍。(3)系统故障发生时短路电流无极性改变,无过零点,断路系统很难灭弧。(4)对迅速切断故障设定的标准很高,交流输电系统的故障切断时限通常大于50ms,但直流系统故障切断时限要求不到5ms,否则就会对系统组件安全产生很大影响。所以,针对柔性直流线路故障问题,一方面需迅速准确识别故障,另一方面需采取合理处置方案限制故障电流,进而降低对换流器、线路和系统产生的威胁。

4柔性直流输电线路故障保护存在的问题与研究展望

4.1存在的关键问题

虽然国内外学者围绕柔性直流输电线路保护原理开展了大量研究,能够在一定程度上提高现有柔性直流输电工程的线路保护性能,但仍存在一些问题:(1)柔性直流输电系统故障阻尼小,故障蔓延速度快,而柔性直流系统中的电力电子设备耐受故障冲击电流能力差,因此对保护系统的响应时间要求很高,即对速动性要求高。(2)虽然行波保护是目前柔性直流输电系统较为适宜的主保护,但其易受雷击、噪声等因素干扰而发生误动,可靠性降低,并且对采样频率的要求高。(3)正负极线路行波之间存在电磁耦合,并且暂态行波在传播过程中会发生畸变、色散、频散等现象,对保护会产生一定的干扰。

4.2保护与控制协调策略

柔性直流输电线路的故障处理与保护和控制密切相关,为实现故障线路的隔离和系统的稳定,需要针对线路保护、辅助电路以及系统控制的动作时间和投入方式,进行协调策略研究。尤其对于多端柔性直流系统,直流线路故障的处理,更加强调多站之间保护与控制的协调作用。采用保护、控制、通信集成一体化的多端柔性直流系统保护方案,研究保护与保护之间,保护与控制之间的配合策略,实现交直流侧保护与控制相协调,整合并减少分散保护设备的数量,从而降低柔性直流线路故障处理与保护的复杂性、缩短故障处理的时间,提高系统的可用率。

4.3柔性直流输电技术的应用前景展望

(1)在城市电网塔容及直流供电中的应用。近几年来,我国经济的高速发展以及城市化建设的不断推进,促进了城市电网的进一步发展,与此同时大部分的城市电网负荷也一直呈现出不断增长的趋势,人们对于电能的供应及质量要求不断提高。(2)替代交直流联网。结合我国目前的总体趋势西部地区的资源相对较多,同时负荷较少,我国90%的水电几乎都集中在西部,而东部地区的能源与负荷量特点则恰好相反。导致了我国地区能源和负荷的失调,因此,特高压直流输电工程在不断增多,实现电能的大容量和远距离运输。目前关于柔性直流输电技术方面仍然存在着一定的障碍,在进行长距离和大容量的发展过程中,要克服以下几个难点:第一就是用碳化归来替代二氧化硅,从而改变VSC的材料,同时还要增强封装材料的绝缘性和耐热性,达到大容量的电流运输。第二就是要加强电流直流断路器的优化与改良,突破上述所提到的故障。如果能在技术上实现故障的突破,那么柔性直流输电技术在未来可能会完全取代传统输电技术,承担起长距离大容量的输电任务。(3)借鉴传统交流输电和常规高压直流输电的继电保护技术,结合柔性直流输电系统的结构特点,研究先进的保护原理。行波保护具有超高速动作且不受分布电容影响的优点,应进一步探究行波在雷击、噪声、电磁耦合等因素影响下的传播规律,从而研究更适合柔性直流输电的新型行波保护方法。因此以行波保护为代表的新型主保护是未来柔性直流输电继电保护研究的重点领域。

结语

阐述了柔性直流输电的故障类型和保护分区,结合现阶段的故障隔离技术,介绍了直流断路器和换流器的应用状况。为快速隔离故障,详细介绍了线路保护。随着电力电子技术的成熟和对继电保护技术的深入研究,柔性直流输电存在的缺陷将逐一得到解决,未来柔性直流电网将更加安全可靠、清洁绿色。

参考文献

[1]刘高任,许烽,徐政,等.适用于直流电网的组合式高压直流断路器[J].电网技术,2016,40(1):70-77.