电线电缆挤塑工艺优化控制体会探讨

(整期优先)网络出版时间:2021-08-05
/ 2

电线电缆挤塑工艺优化控制体会探讨

陈晨、朱旭、吕伟、侍丽霞、吴元祥 

宝胜科技创新股份有限公司 江苏扬州 225800


摘要:虽然电线电缆产品的结构非常简单,但是其质量水平是非常重要的问题,将与人们的身体健康、人身安全、财产安全等密切相关。因此可以说,通过电线电缆产品的应用,给国民经济发展注入源源不断的活力,也是国家开展基础建设和重点工程中必不可少的产品支持。本文通过分析电线电缆的生产线结构、挤塑机装置以及挤塑原理的基础上,得到了影响电线电缆挤塑过程几个主要工艺参数,并且结合实验数据进行研究。

关键词:电线电缆;挤塑工艺;优化控制


在生产电线电缆金属导体外部包裹塑料的时候,需要经过一套有颗粒状固体到软体液体的混合物的过程,这一过程就叫挤出,也叫挤塑。


1、挤塑过程中的影响因素

1.1挤塑温度

在塑料的挤出过程中,物料聚集态的转变及决定物料流动的粘度都取决于温度,因此,温度是塑料挤出工艺中最重要的工艺参数。

由于温度影响着塑料的熔融过程和熔体的流动性,因此挤出温度就和挤出制品质量有着密切的关系。为使固体物料熔化为进行挤出加工的粘流态,挤出物的温度应高于物料的粘流温度(或熔点),而且加工温度还不应使物料出现大量分解,因此挤出温度上限为不能高于物料的最高稳定温度,如熔融态聚乙烯稳定的温度范围较宽,则有较宽的加工温度;而聚氯乙烯的稳定温度范围很窄,故加工温度范围也较窄,为提高材料的热稳定性,在树脂中加入稳定剂以提高最高稳定温度。因为聚合物的挤出温度是一个较大的范围,靠近温度下限和接近温度上限都可以完成塑料的挤出,低温挤出和高温挤出各有所长。

低温挤出有如下优点:保持挤出塑料层的形状比较容易,由于挤包层中热能较小缩短了冷却时间;此外温度低还会减少塑料降解,这对容易产生热降解的塑料(如聚氯乙烯)尤为重要,同时对挤出过程易发生其它物理化学变化(如交联聚乙烯挤出温度高时容易发生先期交联,发泡制品易出现发泡度低)的塑料也很重要。但挤出温度低,临界剪切应力、临界剪切速率值也低,会使挤包层失去光泽,并出现波纹,不规则破裂等现象。另外温度低,塑料熔融区延长,从均化段出来的熔体中仍夹杂有固态物料,这些未熔物料和熔体一起成型于制品上,使挤出层性能下降。

1)加料段采用低温,这是由于加料段要进行机械剪切并搅拌混合,形成固体塞,为熔体挤出产生足够的推力,如温度过高,使塑料早期熔融,不但导致挤出过程中的分解,而且引起“打滑”,造成挤出压力波动,导致挤出量不均匀,并因过早熔融,而致混合不充分,塑化不均匀,所以这一段采用低温。

2)熔融段的温度要有大幅度较大的提高,在该段塑料要实现聚集态的转变,变为粘流态的熔体,需要大量的热量,只有达到一定的温度才能确保大部分组分得以塑化。

3)均化段温度最高,塑料在熔融段已大部分塑化,而其中小部分高分子组成尚未完全塑化,就进入均化段,这部分组成尽管很少,但其塑化是必须实现的,这部分组分的塑化的温度往往需要更高,因此,均化段的挤出温度有所升高是必须的,有时候(在挤出稳定之后),可以维持不变,而赖以塑化时间的延续,实现充分塑化。

4)机脖的温度要保持均化段的温度或稍微降低,这是因为此处要完成将旋转运动的塑料熔体转变为平行直线运动,并将熔体均匀、平稳地导入机头中。在此处滤网、多孔板上的孔将塑胶体分散为条状物,在进入机头时必须在其熔融态下将其彼此压实,显然温度下降太多是不行的。

1.2螺杆转速

由挤出物料输送和均化段粘流体的流率分析可知,塑料流率(即挤出速度)和螺杆转速成正比,由于调节方便,螺杆转速是挤出过程中表征挤出速度的重要操作变量。因此,在一般情况下,提高螺杆转速是提高生产速度,实现高速挤出的重要手段,但通过对塑料熔融长度分析得知,螺杆转速增加,一方面由于增强剪切作用,使剪切摩擦热量增加;另一方面,在没有机头压力控制的情况下,螺杆转速增加。流率增加,物料在机内停留的时间缩短,导致塑料塑化程度下降。而且后者的影响超过前者,会因熔融长度延长至均化段而破坏正常的挤出过程。所以,需要增加螺杆转速来提高挤出速度时,还必须提高加热温度或采用控制机头压力来提高塑料的塑化程度,以保证高速挤出时塑料挤出质量。

1.3牵引速度

挤包制品是由牵引装置拖动通过机头的,为保证产品的质量,要求牵引速度均匀稳定,与螺杆转速协调,以保证挤出厚度和制品外径的均匀性。如果牵引速度不稳定,挤包层易形成竹节状,而牵引过慢时挤出厚度大,且发生堆胶或空管现象;牵引速度过快,易造成挤出拉薄拉细,甚至出现脱胶漏包现象。所以,正常挤出过程中,一定控制好牵引速度。

1.4冷却

挤塑工序中,冷却是很重要的一项。一般分为螺杆冷却、机身冷却及产品冷却。螺杆冷却的作用是消除摩擦过热,稳定挤出压力,促使塑料搅拌均匀,提高塑化质量。机身冷却的作用是增加机筒散热,以克服摩擦过热形成的温升,因为这一温升在挤出过程中,甚至在切断加热电源后也不能停止,从而使合理的温度不能得以长期维持,必须增加散热,使机筒冷却下来,以维持挤出过程中的热平衡。机身冷却是分段进行的,主要以风机冷却为主,考虑到机身各段功能不同,对均化段冷却的使用尤其注意。

产品冷却是确保制品几何形状和内部结构的重要措施。塑料挤包层在离开机头后,应立即进行冷却,否则会在重力作用下发生变形。对于聚氯乙烯等非结晶材料可以不考虑结晶的问题,塑料制品可采用急冷方式用冷水直接进行冷却,使其在冷却水槽中冷透,不再变形。


2、聚乙烯、聚丙烯等结晶聚合物的冷却

对于聚乙烯、聚丙烯等结晶型聚合物的冷却,则要考虑到结晶问题,就通常情况而言,当聚乙烯厚度较薄或加工温度较低时,因为冷却迅速、充分和均匀,一般出现问题少。但在挤出厚度较大(如:电力电缆的护套厚度大多在2.0mm以上,JKLY-10型电缆的绝缘厚度为3.4mm)、挤出温度较高(如:线性低密度聚乙烯为180~220℃,高密度聚乙烯为190~260℃),若冷却工艺处理不当就容易出现问题。聚乙烯加工工艺控制主要从塑化挤出和冷却两方面来控制。聚乙烯成型加工温度宽,但在低温挤出时易形成熔体破裂,造成表面粗糙,光亮度差,还会产生残留的内应力,导致绝缘或护套后期的开裂。因此聚乙烯挤出温度要适当高些,以保证充分塑化塑化越好,其耐环境应力开裂性能就越优良。但挤出温度的提高会对电缆表面质量带来了一些负面影响,易形成表面缺陷,影响电缆表面质量,严重时造成废品。一般我们采取以下措施进行改进:①高温到室温分段冷却的第一段冷却水温选为60—70℃,以手可以伸入水中但停留片刻即感觉烫手为宜,这样既可避免因水温过低骤冷使聚乙烯产生内应力,又可避免水温过高,在聚乙烯表面形成气泡,产生凸起。②冷却水循环过程中,向水槽加水要特别注意,宜采用大口径、低流速加水,并且水不能直接冲到产品表面,最好沿水槽壁缓缓流下。③在产品入水后约半米处增加一个去除气泡的装置,如用软毛刷或细棉纱触刷产品表面,拂去附着的气泡,保持产品表面光洁。④在循环水中加入消泡剂,避免气泡的形成。

通过实践证明,按照以上措施对挤塑生产线水冷却部分进行了改进:冷却水槽向机头延伸,使电缆出机头后在空气中暴露不到一米即整体进入冷却水中;在水槽中增加了除气泡的软毛刷;控制冷却水的分段冷却温度,温度设定为60℃一70℃;并加快了生产节奏,减少线芯存放时间。改进后,生产的产品表面光洁,极少出现凹坑等表面缺陷。


3、结束语

在生产过程中,我们只有了解挤塑设备及塑料属性,然后经过细心调试,才可能生产出符合要求的产品,如果在这过程中,出现像上述类似质量缺陷时,我们不妨用介绍方法进行故障寻找与解决,希望对同行有所帮助。


参考文献:
[1]黄吴,浅谈10kV配电网线路变配电安装技术[J]科技致富向导,2012(13)

[2]陈帝宁,何军浅论配电线路故障原因分析及施工对策[J]城市建设理论研究,2011(20)

[3]邓瑜10kV配网工程项目的质量管理措施[J]工程建设与设计,2012(12)