弹性油箱压缩值调整方法

(整期优先)网络出版时间:2021-05-31
/ 2

弹性油箱压缩值调整方法

李正才

河北省迁西县潘家口水电厂 河北迁西 064310

摘要:水轮发电机组的推力轴承承担着机组转动部分的全部重量和水的轴向推力,在检修过程中需要对推力轴承弹性油箱的受力进行调整,一方面使各个弹性油箱受力均匀,另一方面又要保证镜板水平符合要求。传统调整方法的调整精度及效率都极低,受力调整与水平调整难以兼顾甚至可能出现两者调整方向相互矛盾的情况。本文所述调整方法的创新性在于:建立了测量值与每个弹性油箱应该调整量之间的精确数学关系,理论上可一次调整成功,且达到最高调整精度。填补了推力轴承受力调整方法缺乏理论指导的空白,对于全面提高水轮发电机组的安装与检修质量具有重要意义。关键词:弹性油箱 压缩值 平衡力系 受力调整 自由高度

1 概述

推力轴承是立式水轮发电机组的关键部件,承受整个转动部分的全部重量及轴向水推力。对于大容量的水轮发电机组来说,由于推力负荷较大,多采用弹性油箱支承结构,在安装时对各推力瓦的高度和水平面调整精度要求不高,运行时瓦的不均匀负荷是由弹性油箱通过油压来均衡的,使各瓦受力相对均匀。

各弹性油箱用油管相连,先将油箱内部抽至5mmHg,充入一定压力的油,然后封闭油箱。当弹性油箱被压缩时,内部油压升高,该油压作用力承受转动部分的大部分重量。

以潘家口水电厂1号机组为例,转动部分的总重量约为700吨,共有12个弹性油箱,充入1.1MPa的初始油压,根据弹性油箱的受力面积,该油压对应的支撑总重量约为76吨,各弹性油箱的平均压缩值约为0.65mm。根据规程要求:各弹性油箱压缩值的最大值与最小值之差不超过0.20mm。在一次扩大性大修中,历经8天且含晚上加班,才将弹性油箱的受力基本调整合格,可见传统方法的调整效率之低。

2 转动部分的静态受力分析

取镜板作为研究对象,受到的力包括垂直向下的重力及垂直向上的各弹性油箱的支撑力,是一个空间平行力系,即作用线相互平行但不共面的力系。以共有60b47214b7eab_html_eabb637f18a8c571.gif 个弹性油箱的推力轴承为例,油箱编号按俯视逆时针方向递增,不妨假设各弹性油箱的编号为60b47214b7eab_html_8e19a9c1f37878ee.gif

在此,给出方位角及自由高度的定义:0号弹性油箱位于0º方位,0º方位绕机组中心俯视逆时针旋转60b47214b7eab_html_88a47eb0f6d64a81.gif 角后的新方位为60b47214b7eab_html_88a47eb0f6d64a81.gif 方位;在不承载转动部分重量的情况下,弹性油箱上端面相对于某个基准面的高程称为该弹性油箱的自由高度。

由于每个弹性油箱的受压面积相同,根据连通器原理,在任何时候,每个弹性油箱受到的油压支撑力相同。在某个初始状态下,将60b47214b7eab_html_92acd04653e9b14a.gif 号弹性油箱的自由高度调高60b47214b7eab_html_808600e34468bd29.gif ,在受力调整前后,各弹性油箱的总支撑力可分别表示为:

60b47214b7eab_html_b4d1724542e54771.gif

60b47214b7eab_html_e5475358a5bf7b24.gif

其中:

60b47214b7eab_html_79d1b1f7ccb80ad2.gif60b47214b7eab_html_c64ce553b57fb528.gif 号弹性油箱在调整前的总支撑力。

60b47214b7eab_html_c84a722b134b5975.gif —在调整前,每个弹性油箱由内部油压提供的支撑力。

60b47214b7eab_html_1263698f3d68b3d3.gif —相当于60b47214b7eab_html_c64ce553b57fb528.gif 号弹性油箱的弹性系数。

60b47214b7eab_html_17b732c086b1817d.gif60b47214b7eab_html_c64ce553b57fb528.gif 号弹性油箱在调整前的压缩值。

60b47214b7eab_html_2352228891243325.gif60b47214b7eab_html_c64ce553b57fb528.gif 号弹性油箱在调整后的总支撑力。

60b47214b7eab_html_69d0f7a35d1a1fc8.gif —在调整后,每个弹性油箱由内部油压提供的支撑力。

60b47214b7eab_html_13bc23c99af8e8c3.gif —在调整后,60b47214b7eab_html_c64ce553b57fb528.gif 号弹性油箱相对于调整前的压缩值增量。

记整个转动部分的重量为G,根据理论力学知识,整个转动部分在任何一个稳定状态,其受力都是一个平衡力系,调整前后的平衡力系分别为:

60b47214b7eab_html_e5875093733b2da3.gif60b47214b7eab_html_3d72fbc10e8fab35.gif

两个平衡力系之差仍然是一个平衡力系,作用点及力线方向一致的两个力可以直接做代数差,上述两个平衡力系符合该条件,其差为:

60b47214b7eab_html_d224618ccc74aa0d.gif

根据平衡力系的条件可知:

60b47214b7eab_html_b29a1b11170ce5aa.gif

60b47214b7eab_html_77c75a276f458da0.gif

以前述机组为例,无论怎么调整受力,其平均压缩值的变化率一般不超过0.5%,60b47214b7eab_html_11f67550a4b8f5d5.gif 对压缩值的影响不超过0.00325mm,小于百分表的读数误差,远远小于相关技术要求的0.20mm的调整误差。在后续分析中,假设:

60b47214b7eab_html_a1ab49cbdcda034f.gif

设弹性油箱位置圆的半径为R,根据空间平行力系的平衡条件,可得:

60b47214b7eab_html_ea06dd892179545.gif ……………………………………………………⑴

60b47214b7eab_html_33ed29a438a6005a.gif ……………………………………………⑵

60b47214b7eab_html_f0d803dac6d0e076.gif ……………………………………………⑶

其中⑵⑶式等效于⑷式对于任意60b47214b7eab_html_cf3122fe14f4683d.gif 皆成立

60b47214b7eab_html_a8c78115ae8aa061.gif …………………………………………⑷

3 受力调整方案

在受力调整之后,各弹性油箱的压缩值以及镜板水平与镜板中心高程都会发生变化,不妨设各参数为:

60b47214b7eab_html_8986e16f9f761521.gif —镜板倾斜方位。

60b47214b7eab_html_7d0a269390b8c83a.gif —调整前后的镜板摩擦面形成的二面角,即相对于调整前的镜板倾斜角度,在60b47214b7eab_html_8986e16f9f761521.gif 方位向上倾斜。

60b47214b7eab_html_cb3ed393b5abfd7e.gif —镜板中心相对于调整前的上升量。

60b47214b7eab_html_4782681e0009a55.gif ,即60b47214b7eab_html_e50111b570f86a.gif 为弹性油箱位置圆在60b47214b7eab_html_8986e16f9f761521.gif 方位向上倾斜的量。用两种方式表示60b47214b7eab_html_5a45b6a10875357.gif 号弹性油箱上端面相对于调整的高程增量,可得:

60b47214b7eab_html_4976c1ef8d0ece7a.gif

如何调整弹性油箱的自由高度,取决于以下三个方面:

①、受力要求,具体而言,就是要使各弹性油箱受力均匀,或者说,使各弹性油箱的压缩值尽量相等,即:

60b47214b7eab_html_88eb34a560f1fc4e.gif …………………………………………⑸

②、转子与定子之间空气间隙及转轮止漏环间隙,应使上述间隙均匀。

③、镜板中心的高程要求,在实际调整过程中,一般不需要刻意调整该项。

先分析第②项,如图所示,以测量空气间隙位置的定子中心点与止漏环中心点的连线为Z轴,正方向朝上,以调整前的镜板摩擦面与Z轴的交点为原点,0号弹性油箱及3号弹性油箱分别在+X方向及+Y方向,建立三维直角坐标系。

Z轴即为机组中心线,整个转动部分的几何中心点连线称为机组轴线,通过移轴及调整镜板水平,使机组轴线与机组中心线尽量重合。

设过空气间隙测量点的水平面与机组轴线的交点为60b47214b7eab_html_7a61f4615893315c.gif ,过止漏环中心的水平面与机组轴线的交点为60b47214b7eab_html_1e39a2722002e3af.gif ,直线60b47214b7eab_html_96f1188135ac0d4d.gif 与镜板摩擦面的交点为60b47214b7eab_html_dc0bea44e88e4773.gif

记空气间隙测量点及止漏环中心至镜板摩擦面的距离分别为60b47214b7eab_html_6c624524994fd43d.gif60b47214b7eab_html_12af42ee75addb34.gif 。通过测量空气间隙及止漏环间隙,可以确定60b47214b7eab_html_b2bb7dac28f80bf8.gif60b47214b7eab_html_ca149c3ece3674bf.gif 两点的坐标:

60b47214b7eab_html_a4858ac063f2539c.gif60b47214b7eab_html_6d1b366373c92a82.gif

60b47214b7eab_html_dc0bea44e88e4773.gif 的坐标为60b47214b7eab_html_5f4e7d210826dd40.gif ,则:

60b47214b7eab_html_1107e9e50b3793d8.gif

60b47214b7eab_html_2c8bc17eba595a73.gif60b47214b7eab_html_4f8769c63eb83db9.gif

根据上述三式计算出60b47214b7eab_html_82626de58c8dc90.gif60b47214b7eab_html_2686e62d26ad1bd0.gif ,将轴由60b47214b7eab_html_82626de58c8dc90.gif 方位朝中心水平移动60b47214b7eab_html_2686e62d26ad1bd0.gif

移轴与弹性油箱自由高度的调整没有关系,移轴并不能保证空气间隙与止漏环间隙达到相关要求。还要调整镜板的水平度。

镜板水平调整需要兼顾以下两个原则:

其一、镜板绝对水平不是最佳方案,发电机导轴承中心与水导轴承中心连线成为铅垂线是最佳选择,可减小轴瓦间隙,使之径向位移减小,对导轴瓦的伤害变小,振动与噪声也小。

其二、在移轴之后,保持坐标原点60b47214b7eab_html_ea780174d52b5fde.gif 点不动,将60b47214b7eab_html_52bda1df88827f4c.gif 调至与Z轴重合,即消除图中的角60b47214b7eab_html_bf10f34c3ddf000.gif ,由于向量60b47214b7eab_html_fa8f007abeba634e.gif 与向量60b47214b7eab_html_67db367a0dcd73d.gif 平行且同向,其中:60b47214b7eab_html_3387e41ff2b99641.gif

根据⑹、⑺两式确定调整参数60b47214b7eab_html_7b7a2f6dcc57f6f9.gif60b47214b7eab_html_568062bdbb94cc4b.gif

60b47214b7eab_html_6a02c86d783846f2.gif …………………………………………⑹

60b47214b7eab_html_87490d40d5de204e.gif …………………………………………⑺

根据⑻式确定每个弹性油箱的调整值,其中60b47214b7eab_html_e3707efab3b0c1ed.gif 由第③项决定。

60b47214b7eab_html_f0c66fd2cce78504.gif ………………………………………⑻

4 调整值的特征分析

不妨称60b47214b7eab_html_fb334471809b3343.gif 为调整变量;称60b47214b7eab_html_82a1da184869cc29.gif60b47214b7eab_html_fe238174b6405d03.gif60b47214b7eab_html_8e8646dfe935d3b3.gif60b47214b7eab_html_6b25f74e117702ed.gif 为测量变量。⑴~⑶揭示了测量变量的内部联系。

根据任意一组测量变量,通过⑻式,均可求出唯一的一组调整变量,该组变量,既符合受力要求,也符合镜板水平及镜板高程的要求。

如果只是考虑受力、镜板水平、镜板高程中的任意一项或两项,均有无穷组调整变量符合其要求。

其实很好理解,各弹性油箱受力均匀的条件是在自由状态下的受力点共面,由于该平面未必是水平面,故镜板未必水平。显而易见,对称等量改变部分弹性油箱的自由高度,可改变受力但不改变镜板水平,故镜板绝对水平不能保证受力均匀。等量改变所有弹性油箱的自由高度,则不改变受力及镜板水平,但改变镜板高程。

5 调整变量对测量变量的影响

前面介绍了通过测量变量确定调整变量的函数关系,即测量所有测量变量,根据相关技术要求,求出每个弹性油箱调整的量。

如果随意调整弹性油箱的自由高度,即将调整变量60b47214b7eab_html_5433250733ddabdb.gif 作为已知量,进行相关调整之后,其对镜板水平、镜板高程、压缩值的影响如下。

将⑻式代入⑴、⑵、⑶,可求出测量变量60b47214b7eab_html_fe238174b6405d03.gif60b47214b7eab_html_8e8646dfe935d3b3.gif60b47214b7eab_html_6b25f74e117702ed.gif60b47214b7eab_html_d3fcf6929edcbe72.gif ,即:

60b47214b7eab_html_ca2d67feb79d9cf.gif

60b47214b7eab_html_72eccaf53cccc69e.gif

60b47214b7eab_html_d827a4b16666fb26.gif

60b47214b7eab_html_671d0169ca63739b.gif

其中:

60b47214b7eab_html_26fcc2696c747e3b.gif60b47214b7eab_html_9c79ca5bbf4aec96.gif

60b47214b7eab_html_4aa850bdacf95920.gif60b47214b7eab_html_f1a5ca49f1ede588.gif

60b47214b7eab_html_d861ea4f590ed398.gif60b47214b7eab_html_ebb6fce5db91cdf4.gif

60b47214b7eab_html_73b54d00285f1746.gif60b47214b7eab_html_a0b50ec414dfda24.gif

随着加工工艺的提高,各弹性油箱的弹性系数将无限接近,如果:

60b47214b7eab_html_3335936c32b819ff.gif

则:60b47214b7eab_html_3f669e42181604b9.gif

以上各式可以简化为:

60b47214b7eab_html_c132751be01dd70d.gif

60b47214b7eab_html_18a65e8e8955b3e7.gif

60b47214b7eab_html_589faec5c13a1f15.gif

60b47214b7eab_html_98625f4378e40ada.gif

6 估算各弹性油箱的弹性系数

根据空间平行力系的平衡条件可知,任何一组压缩值60b47214b7eab_html_82609daee87dde19.gif 都满足下式:

60b47214b7eab_html_3677fd3648e41e13.gif …………………………………⑽

用若干组不同的压缩值代入上述两式,取其中60b47214b7eab_html_9620b0e7f4a8fc54.gif 个方程,同时令60b47214b7eab_html_595a72358a5dda8b.gif ,构成一个由11个关于60b47214b7eab_html_3edea57965634fda.gif 的线性方程组,可求出60b47214b7eab_html_c5ca4b221313b20b.gif

也可以建立超定方程组,采用最小二乘法,求出精确度更高的60b47214b7eab_html_fdac74205cd3d31.gif ,其具体方法在此不再赘述。

7 结束语

采用传统的受力调整方法,没有成熟的理论指导,虽然相关技术规范允许的调整误差非常大,调整效率仍然极低。一次受力调整,往往少则十几次,多则数十次,还经常只是接近甚至超出规程的最低要求。有时会产生受力调整与镜板水平调整的方向相反从而无法调整的错觉。在实际调整时,哪个弹性油箱该调多少,心中完全没数,存在极大盲目性,也不敢大范围及大幅调整。

有了本文的理论指导,可以轻松将压缩值调整误差宽度缩小至0.02mm,将调整精度提高十倍,大幅减小机组运行时的振动与摆度。由于有了精确的调整量,必然可以一次性调整成功,调整效率提高三十倍以上。

显然,本文提供的调整方法同样适应于纯弹性支撑结构的推力轴承的受力调整,当初发明弹性油箱的出发点在于:为了克服纯弹性支撑结构的推力轴承没有合适的受力调整方法。

本文填补了推力轴承受力调整方法缺乏理论指导的空白,对于全面提高水轮发电机组的安装与检修质量具有里程碑意义。


参与文献:

⑴《水轮发电机组安装与检修》主编 王玲花 中国水利水电出版社。

⑵《水轮发电机组安装技术规范》GB/T8564—2003,国家质量监督检验检疫总局发布,2004年3月1日实施。




60b47214b7eab_html_b027a136bd85018d.jpg


3