神经调节素对脑出血大鼠血肿周围损伤的治疗作用和机制

(整期优先)网络出版时间:2016-02-12
/ 4

神经调节素对脑出血大鼠血肿周围损伤的治疗作用和机制

方和王海萍

方和王海萍

(青岛大学附属医院神经内科山东青岛266000)

【摘要】目的:研究神经调节素-1β(NRG-1β)对大鼠脑出血后C3表达及脑水肿的影响和机制。方法:随机选取SD大鼠分为假手术组、对照组、NRG-1β低剂量组(1μg/kg)、NRG-1β高剂量组(4μg/kg)随机各取10只每组。应用VII型胶原酶于右侧脑纹状体区注射法建立脑出血模型。采用干湿重法和免疫组化检测脑出血72小时各组大鼠血肿区域含水量占比及血肿周围组织C3的表达情况。结果:脑出血大鼠脑组织含水量及C3表达水平在对照组及治疗组明显高于假手术组(P<0.05),而NRG-1β治疗较对照组能够减少受损组织含水量及抑制C3升高(P<0.05),并与治疗剂量呈正比(P<0.05)。结论:NRG-1β可能通过下调脑出血诱导的C3表达和减轻脑水肿程度,改善脑内微环境,提示NRG-1β具有对脑出血后继发脑损伤有积极的保护作用。

【关键词】脑出血;神经调节素;补体C3;脑水肿

【中图分类号】R743【文献标识码】A【文章编号】2095-1752(2016)06-0051-03

TherapeuticeffectandmechanismofNRG-1βoncerebraledemaextentandComplementcomponent3levelinaintracerebralhemorrhageratmodelFangHe,WangHaiping.

DepartmentofNeurology,TheAffiliatedHospitalofQingdaoUniversity,Qingdao266000,China

【Abstract】ObjectiveToexplorethetherapeuticeffctandmechanismofNRG-1βoncerebraledemaextentandComplementcomponent3levelinaintracerebralhemorrhageratmodelinrats.Method40maleSDratswererandomlyallocatedintosham-operation(n=10),Controlgroup(n=10),low-doseNRG-1βgroup(1μg/kg,n=10)andthehigh-doseNRG-1βgroup(4μg/kg,n=10).ICHmodelwasinducedbycollagenaseVIIinthecontrolgroupandtreatmentgroup.Cerebraledemawasassessedat72hoursusingdryandwetrighthemisphereweighing,andC3levelsaroundthehematomaweredeterminedbyimmunohistochemicalassay.ResultsComparedwiththesham-operatedgroup,theexpressionofC3andthebrainwatercontentinthecontrolgroupandtreatmentgroupswereobviouslyhigher(P<0.05),thetreatmentgroupsissuperiortothecontrolgroupwithadose-dependentmanner(P<0.05).ConclusionNRG-1βcanreducetheexpressionofC3andthebrainwatercontentinratsafterintracerebralhemorrhageOnDay3,thusimprovesthebrainmicroenvironmentandprotectagainstsecondarybraininjury.

【Keywords】CerebralHemorrhage;Neuregulin-1β;Complementcomponent3;Cerebraledema

脑出血(IntracerebralHemorrhage,ICH)作为具有高死亡率及致残率的卒中类型[1],其损伤机制包括原发血肿产生的占位效应及继发的炎性反应、血脑屏障(blood-brainbarrier,BBB)破坏、脑水肿形成和细胞坏死或凋亡等[2]。在多项研究证实病理性补体激活作为判断ICH损伤程度及预后的关键影响因素,同样在上述继发损伤过程发挥重要作用[3-4]。神经调节素-1β(neuregulin-1β,NRG-1β)是经多项实验证实具有参与神经细胞发育分化、髓鞘形成[5]及在脑损伤后通过多种机制发挥神经保护作用的高表达于神经系统的神经营养因子[6],但目前尚未有其对补体影响的研究,本实验通过观察NRG-1β对大鼠ICH后损伤局部补体C3表达及脑水肿程度的影响,探讨其在脑出血后的神经保护机制。

1.材料与方法

1.1脑出血模型制备、分组及治疗方案

脑出血模型制备是立体定向注射VII型胶原酶注射至成年SD大鼠(250±10g)右侧纹状体区。大鼠腹腔经10%水合氯醛(400mg/kg)腹腔注射麻醉后,俯卧位固定于脑立体定向仪,定位右纹状体区(前囟后0.2mrn、中线向右旁开3mm处,微量注射器垂直向下进针5.5mm),在3分钟内注入2μl含0.5U的VII型胶原酶溶液,留针5分钟后缓慢拔出。待手术大鼠清醒后,根据是否存在左侧Horner征和右前肢内收屈曲或爬行时向右侧旋转等症状判断ICH制作成功与否。同时取10只作为假手术组,按前述步骤脑内注射等体积生理盐水。

将30只成功的ICH大鼠随机分为对照组(ICH模型组,n=10)、NRG-1β低剂量治疗组(n=10)和NRG-1β高剂量治疗组(n=10)。预先用0.1mol/LPBS将重组人NRG-1β(purity>97%,R&DSystems,Inc)溶解稀释成1μg/ml溶液,低剂量治疗组大鼠于ICH后2h予以腹腔注射NRG1-β(1μg/kg),高剂量治疗组同样方式注射NRG1-β(4μg/kg),对照组及假手术组术后2h予以腹腔注射等体积PBS。

1.2脑组织含水量(BrainWaterContent,BWC)测定

每组于脑出血术后第3天各取5只大鼠,在深度麻醉后快速断头取脑,取右侧大脑半球进针处前后2mm的冠状位脑组织测得湿重,再置于100℃干燥箱烘干48h测得干重,应用“BWC=(湿重-干重)/湿重×100%”计算结果。

1.3免疫组化检验

于ICH后第3天每组取5只大鼠,10%水合氯醛(300mg/kg)深度麻醉后依次用生理盐水、4%甲醛溶液各200ml经心脏灌后断头取脑,随后依次经4h双蒸馏水浸泡、梯度乙醇脱水、二甲苯透明、石蜡包埋及切成厚度为6μm薄片。使用兔抗鼠C3多克隆抗体(Abcam)等试剂,按常规步骤行免疫组化染色。在400倍光镜下,每只大鼠取四个连续切片均随机选取四个不重叠视野,采用IPP6.0图像处理分析,计算每个视野的平均光密度从而得到该例C3表达情况。

1.4统计学方法

采用SPSS17.0软件进行统计学分析。数据以均数±标准差表示,组间差异显著性检验用方差分析的方法。P<0.05为差异有统计学意义。

2.结果

2.1脑组织含水量

在脑出血第3天的,大鼠脑组织含水量在对照组(81.25±0.52%)及治疗组明显高于假手术组(77.53±0.56)(P<0.05),且根据NRG-1β高剂量组(78.85±0.35%)和低剂量组(79.74±0.31%)含水量的结果推断随NRG-1β剂量升高而减轻水肿程度,见图1。

3.讨论

脑出血后,脑内原位细胞、浸润的炎症细胞均能合成补体,与经破损的BBB侵入的循环补体[7]共同促成损伤局部补体高表达,过敏毒素C3a、C5a能够使内皮细胞、小胶质细胞快速激活并释放TNF-α、IL-1β和E选择素等炎症因子从而放大炎症反应,加重BBB损害及脑水肿程度[7]。脑水肿是影响脑出血继发损伤的重要因素,在相关实验证实脑水肿于ICH后3~4天达高峰,过度激活的补体级联反应加剧脑水肿程度[3],而应用非特异性补体抑制剂-眼镜蛇毒因子[9]及C3基因缺陷小鼠的ICH实验中均观察到脑水肿程度明显减轻[10]。

基因缺陷(C1q、C3、C5)小鼠的短暂性脑缺血模型比较,C3缺陷小鼠较另二者表现出低中性粒细胞浸润及低氧化应激水平,同样在神经功能障碍及梗死体积等方面均受损最轻[11],在C3基因缺陷小鼠ICH模型观察到同样现象[10]。在一项纳入1451名青年(18~50岁)急性脑梗死患者的回故性临床研究发现血清C3水平与3个月后Rankin评分负相关,即高C3水平预示不良预后[12]。

研究证实NRG-1β在体内外实验均能够保护受损血管内皮细胞和抑制血脑屏障的通透性升高[13],以及促进血管内皮细胞在体外新生血管形成[14]和抑制氧糖缺乏情况下的内皮前体细胞凋亡[15]。NRG-1β预治疗或后治疗缺血性卒中,均可减轻体内巨噬细胞和小胶质细胞浸润及减少炎性因子如热休克蛋白-70、基质金属蛋白酶-9和IL-1β等表达[16-17],并可抑制体外IL-1β诱导内皮损伤模型的细胞间黏附分子、E-选择素表达及中性粒细胞粘附[18]。

在本研究中我们通过脑组织含水量测定及免疫组化检测证实NRG-1β治疗ICH能够减轻急性期脑水肿及抑制补体激活关键枢纽的C3表达量,且与剂量呈正比,抑制过度补体激活有助于减轻继发于ICH后的炎症反应,改善脑内微环境,对ICH后继发脑损伤产生积极的保护作用。

综合既往实验证据可见NRG-1β在脑损伤后通过保护BBB、抑制炎症反应等方式产生神经保护作用,推测本次研究结果可能为NRG-1β上述保护机制相关,本研究进一步拓展当前针对NRG-1β在脑出血后的保护机制的认识,NRG-1β作为极具希望的针对出血性或缺血性卒中的急性期干预治疗的候选药物,但仍需继续探索明确其潜在的细胞和分子机制。

【参考文献】

[1]QureshiAI,MendelowAD,HanleyDF.Intracerebralhaemorrhage[J].TheLancet,2009,373(9675):1632-1644.

[2]WangJ.Preclinicalandclinicalresearchoninflammationafterintracerebralhemorrhage[J].ProgNeurobiol,2010,92(4):463-477.

[3]HuaY,XiG,KeepRF,etal.Complementactivationinthebrainafterexperimentalintracerebralhemorrhage[J].Journalofneurosurgery,2000,92(6):1016.

[4]DucruetAF,ZachariaBE,HickmanZL,etal.Thecomplementcascadeasatherapeutictargetinintracerebralhemorrhage[J].ExperimentalNeurology,2009,219(2):398-403.

[5]MeiL,XiongW.Neuregulin1inneuraldevelopment,synapticplasticityandschizophrenia[J].NatureReviewsNeuroscience,2008,9(6):437-452.

[6]LinyingZ,WeiW,MinxiaW,etal.NeuroprotectiveEffectsofNeuregulin-1?onOligodendrocyteType2AstrocyteProgenitorsFollowingOxygenandGlucoseDeprivation[J].PediatricNeurology,2014,50(4):357-362.

[7]BrennanFH,AndersonAJ,TaylorSM,etal.Complementactivationintheinjuredcentralnervoussystem:anotherdual-edgedsword?[J].JNeuroinflammation,2012,9:137.

[8]RynkowskiMA,KimGH,GarrettMC,etal.C3areceptorantagonistattenuatesbraininjuryafterintracerebralhemorrhage[J].JCerebBloodFlowMetab,2009,29(1):98-107.

[9]XiG,HuaY,KeepRF,etal.Systemiccomplementdepletiondiminishesperihematomalbrainedemainrats[J].Stroke,2001,32(1):162-167.

[10]YangS,NakamuraT,HuaY,etal.IntracerebralhemorrhageincomplementC3-deficientmice[J].ActaNeurochirSuppl,2006,96:227-231.

[11]MoccoJ,MackWJ,DucruetAF,etal.ComplementcomponentC3mediatesinflammatoryinjuryfollowingfocalcerebralischemia[J].CircRes,2006,99(2):209-217.

[12]ZhangB,YangN,GaoC.IsplasmaC3andC4levelsusefulinyoungcerebralischemicstrokepatients?Associationswithprognosisat3months[J].JournalofThrombosisandThrombolysis,2015,39(2):209-214.

[13]LokJ,ZhaoS,LeungW,etal.Neuregulin-1EffectsonEndothelialandBlood–BrainBarrierPermeabilityAfterExperimentalInjury[J].TranslationalStrokeResearch,2012,3(S1):119-124.

[14]LokJ,SardiSP,GuoS,etal.Neuregulin-1signalinginbrainendothelialcells[J].JournalofCerebralBloodFlow&#38;Metabolism,2008,29(1):39-43.

[15]SafaRN,PengXY,PentassugliaL,etal.Neuregulin-1regulationofembryonicendothelialprogenitorcellsurvival[J].AJP:HeartandCirculatoryPhysiology,2011,300(4):H1311-H1319.

[16]XuZ,FordGD,CroslanDR,etal.Neuroprotectionbyneuregulin-1followingfocalstrokeisassociatedwiththeattenuationofischemia-inducedpro-inflammatoryandstressgeneexpression[J].NeurobiologyofDisease,2005,19(3):461-470.

[17]LiQ,ZhangR,GeY,etal.EffectsofNeuregulinonExpressionofMMP-9andNSEinBrainofIschemia/ReperfusionRat[J].JournalofMolecularNeuroscience,2009,38(2):207-215.

[18]XuZ,JiangJ,FordG,etal.Neuregulin-1isneuroprotectiveandattenuatesinflammatoryresponsesinducedbyischemicstroke[J].BiochemicalandBiophysicalResearchCommunications,2004,322(2):440-446.

[19]WuL,WalasS,LeungW,etal.Neuregulin1-βDecreasesIL-1β-InducedNeutrophilAdhesiontoHumanBrainMicrovascularEndothelialCells[J].TranslationalStrokeResearch,2015,6(2):116-124.