学科分类
/ 25
500 个结果
  • 简介:摘要 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。 关键词 城市轨道交通系统 车内噪声 玻璃隔音量 Abstract With the continuous development of urban rail transit system technology, the comfort of rail vehicles is also constantly improving. The noise inside the train is an important index that affects the comfort of the train. Based on a large number of test data, this article optimized the existing calculation scheme of the volume of glass insulation, and improved the accuracy of the calculation of the volume of the window insulation of urban rail vehicles. It is of great significance to estimate the overall volume of urban rail vehicles. Keywords urban rail transit system The noise inside the train the volume of glass insulation 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。车窗作为影响车内噪声的关键因素,便成为了城轨车辆隔声研究的重要对象。 城轨车辆的车窗按结构型式一般分为单元组合式车窗和粘接式车窗,无论车窗的型式如何变化,玻璃组成作为车窗上的主要部件,在车窗的隔音性上起到了至关重要的作用。 图1 地铁车窗 1 玻璃隔声计算现状 隔声量的计算方法多种多样,其中有公式计算法、图线判断法、平台做图法、隔声指数法、实测图表法。 对于幕墙、门窗等外维护结构,国际、国内众多声学专家推荐并普遍采用的公式汇总如下。 (1):计算单层构件时采用: R=13.5lgm+13 (公式一) 上面公式中: R:单层玻璃的隔声量; m:构件的面密度; (2):计算中空或夹层构件时采用: R=13.5lg(m1+m2)+13+ΔR1 (公式二) 上面公式中: R:双层玻璃结构的隔声量; m1,m2:组成构件的面密度; ΔR1:双层构件中间层的附加隔声量: 对于PVB膜,当膜厚为0.38时取4dB; 当膜厚为0.76时取5.5dB; 当膜厚为1.14时取6dB; 当膜厚为1.52时取7dB; 对空气层,按“瑞典技术大学”试验测定参数曲线选取,在空气层为100mm以下时,附加隔声量近似等于空气层厚度的0.1; (3):计算中空+夹层构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式三) 上面公式中: ΔR1:构件空气层的附加隔声量; ΔR2:构件PVB膜的附加隔声量; 其它参数可以参看双层玻璃构件; (4):计算三片双中空构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式四) 上面公式中: ΔR1:构件空气层1的附加隔声量; ΔR2:构件空气层2的附加隔声量; 其它参数可以参看双层玻璃构件[1]。 经过现有多个城轨项目的真实情况对比,使用上述公式进行城轨车辆车窗隔音计算时,计算结果与实际测量值存在较大偏差。 2 样块试制及测试 为进一步提升城轨车辆车窗隔音计算的准确性,对各种规格的玻璃组成进行了样块试制并送噪声实验室进行数据测试。 2.1 样块试制 车窗玻璃的结构组成型式较多,针对120km/h速度等级以下的城轨车辆,车辆车窗玻璃组成主要有以下几种型式: 表1 玻璃组成的主要型式 序号 玻璃组成的主要型式 1 玻璃+空气+玻璃 2 玻璃+氩气+玻璃 3 玻璃+空气+LOW-E+玻璃 接下来针对广泛应用的3种型式的玻璃组成进行样块试制,试制的样块规格如下: 表2 玻璃样块试制 2.2 试验测试 在噪声实验室中对试制样块测试,并对测试数据与既有方案计算结果进行对比分析,结果如下: 表3 试制样块测试结果 从以上数据可知,使用既有的玻璃隔音计算方法求得的隔音量相较于实验室测量的隔音量均偏低。中空层越厚,差值越大,最大达3.99dB。 3 隔声计算公式优化 依据测试数据,并考虑氩气替代空气以及附加LOW-E膜的情况,经过多次优化,最终提出优化后计算公式如下: R=13.5lgm+15+ΔR1+ΔR2+ΔR3+ΔR4 =13.5lg(2.56*T1+1.07*T3)+15+ΔR1+ΔR2+ΔR3+ΔR4 该公式可适用于单层构件、中空(空气、氩气,下同)构件、夹层(PVB膜)构件、中空+夹层构件、三片双中空构件、附加LOW-E膜构件,ΔR1、ΔR2、ΔR3、ΔR4为附加隔声量,按实际情况进行添加使用。 R-车窗玻璃隔声量,单位:dB; m-复合玻璃面密度,2.56为玻璃密度, 1.07为PVB密度,单位:Kg/mm3; T1-玻璃累加厚度,单位:mm; ΔR1-中空层的附加隔声量, 单位:dB; T2为中空层厚度,单位:mm; 当T2<13mm时,ΔR1=0.1T2; 当13≤T2<30mm时,ΔR1=0.15T2; 当30≤T2<100mm时,ΔR1=0.1T2; ΔR2-PVB膜的附加隔声量,单位:dB; PVB膜厚度与其附加隔声量的对应关系如下: 表4 PVB膜厚度与附加隔声量关系 PVB膜厚度T3 单位:mm PVB膜的附加隔声量ΔR2 单位:dB 0.38 1.82 0.76 2.48 1.14 2.54 1.52 2.79 3.42 3.14 3.8 3.21 4.56 3.37 5.32 3.44 6.84 3.5 ΔR3-LOW-E膜的附加隔声量,单位:dB;ΔR3=0.5dB。 ΔR4-氩气的附加隔声量,单位:dB;ΔR4=0.4dB。 4 算法优化前后对比 采用优化后玻璃隔声计算的结果与既有的计算方式进行对比,结果如下: 表5 计算优化前后差值对比 通过上述优化前后玻璃隔音量计算结果,可以清晰发现优化后的计算方案与实验室测量的隔音量差值明显缩小,基本能控制在1dB以内。 4 结论 随着城市轨道交通的逐步发展,地铁项目越来越多,且速度越来越快,噪声问题将成为影响乘客乘车舒适性的重要因素。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。

  • 标签:
  • 简介:摘要 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。 关键词 城市轨道交通系统 车内噪声 玻璃隔音量 Abstract With the continuous development of urban rail transit system technology, the comfort of rail vehicles is also constantly improving. The noise inside the train is an important index that affects the comfort of the train. Based on a large number of test data, this article optimized the existing calculation scheme of the volume of glass insulation, and improved the accuracy of the calculation of the volume of the window insulation of urban rail vehicles. It is of great significance to estimate the overall volume of urban rail vehicles. Keywords urban rail transit system The noise inside the train the volume of glass insulation 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。车窗作为影响车内噪声的关键因素,便成为了城轨车辆隔声研究的重要对象。 城轨车辆的车窗按结构型式一般分为单元组合式车窗和粘接式车窗,无论车窗的型式如何变化,玻璃组成作为车窗上的主要部件,在车窗的隔音性上起到了至关重要的作用。 图1 地铁车窗 1 玻璃隔声计算现状 隔声量的计算方法多种多样,其中有公式计算法、图线判断法、平台做图法、隔声指数法、实测图表法。 对于幕墙、门窗等外维护结构,国际、国内众多声学专家推荐并普遍采用的公式汇总如下。 (1):计算单层构件时采用: R=13.5lgm+13 (公式一) 上面公式中: R:单层玻璃的隔声量; m:构件的面密度; (2):计算中空或夹层构件时采用: R=13.5lg(m1+m2)+13+ΔR1 (公式二) 上面公式中: R:双层玻璃结构的隔声量; m1,m2:组成构件的面密度; ΔR1:双层构件中间层的附加隔声量: 对于PVB膜,当膜厚为0.38时取4dB; 当膜厚为0.76时取5.5dB; 当膜厚为1.14时取6dB; 当膜厚为1.52时取7dB; 对空气层,按“瑞典技术大学”试验测定参数曲线选取,在空气层为100mm以下时,附加隔声量近似等于空气层厚度的0.1; (3):计算中空+夹层构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式三) 上面公式中: ΔR1:构件空气层的附加隔声量; ΔR2:构件PVB膜的附加隔声量; 其它参数可以参看双层玻璃构件; (4):计算三片双中空构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式四) 上面公式中: ΔR1:构件空气层1的附加隔声量; ΔR2:构件空气层2的附加隔声量; 其它参数可以参看双层玻璃构件[1]。 经过现有多个城轨项目的真实情况对比,使用上述公式进行城轨车辆车窗隔音计算时,计算结果与实际测量值存在较大偏差。 2 样块试制及测试 为进一步提升城轨车辆车窗隔音计算的准确性,对各种规格的玻璃组成进行了样块试制并送噪声实验室进行数据测试。 2.1 样块试制 车窗玻璃的结构组成型式较多,针对120km/h速度等级以下的城轨车辆,车辆车窗玻璃组成主要有以下几种型式: 表1 玻璃组成的主要型式 序号 玻璃组成的主要型式 1 玻璃+空气+玻璃 2 玻璃+氩气+玻璃 3 玻璃+空气+LOW-E+玻璃 接下来针对广泛应用的3种型式的玻璃组成进行样块试制,试制的样块规格如下: 表2 玻璃样块试制 2.2 试验测试 在噪声实验室中对试制样块测试,并对测试数据与既有方案计算结果进行对比分析,结果如下: 表3 试制样块测试结果 从以上数据可知,使用既有的玻璃隔音计算方法求得的隔音量相较于实验室测量的隔音量均偏低。中空层越厚,差值越大,最大达3.99dB。 3 隔声计算公式优化 依据测试数据,并考虑氩气替代空气以及附加LOW-E膜的情况,经过多次优化,最终提出优化后计算公式如下: R=13.5lgm+15+ΔR1+ΔR2+ΔR3+ΔR4 =13.5lg(2.56*T1+1.07*T3)+15+ΔR1+ΔR2+ΔR3+ΔR4 该公式可适用于单层构件、中空(空气、氩气,下同)构件、夹层(PVB膜)构件、中空+夹层构件、三片双中空构件、附加LOW-E膜构件,ΔR1、ΔR2、ΔR3、ΔR4为附加隔声量,按实际情况进行添加使用。 R-车窗玻璃隔声量,单位:dB; m-复合玻璃面密度,2.56为玻璃密度, 1.07为PVB密度,单位:Kg/mm3; T1-玻璃累加厚度,单位:mm; ΔR1-中空层的附加隔声量, 单位:dB; T2为中空层厚度,单位:mm; 当T2<13mm时,ΔR1=0.1T2; 当13≤T2<30mm时,ΔR1=0.15T2; 当30≤T2<100mm时,ΔR1=0.1T2; ΔR2-PVB膜的附加隔声量,单位:dB; PVB膜厚度与其附加隔声量的对应关系如下: 表4 PVB膜厚度与附加隔声量关系 PVB膜厚度T3 单位:mm PVB膜的附加隔声量ΔR2 单位:dB 0.38 1.82 0.76 2.48 1.14 2.54 1.52 2.79 3.42 3.14 3.8 3.21 4.56 3.37 5.32 3.44 6.84 3.5 ΔR3-LOW-E膜的附加隔声量,单位:dB;ΔR3=0.5dB。 ΔR4-氩气的附加隔声量,单位:dB;ΔR4=0.4dB。 4 算法优化前后对比 采用优化后玻璃隔声计算的结果与既有的计算方式进行对比,结果如下: 表5 计算优化前后差值对比 通过上述优化前后玻璃隔音量计算结果,可以清晰发现优化后的计算方案与实验室测量的隔音量差值明显缩小,基本能控制在1dB以内。 4 结论 随着城市轨道交通的逐步发展,地铁项目越来越多,且速度越来越快,噪声问题将成为影响乘客乘车舒适性的重要因素。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。

  • 标签:
  • 简介:摘要 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。 关键词 城市轨道交通系统 车内噪声 玻璃隔音量 Abstract With the continuous development of urban rail transit system technology, the comfort of rail vehicles is also constantly improving. The noise inside the train is an important index that affects the comfort of the train. Based on a large number of test data, this article optimized the existing calculation scheme of the volume of glass insulation, and improved the accuracy of the calculation of the volume of the window insulation of urban rail vehicles. It is of great significance to estimate the overall volume of urban rail vehicles. Keywords urban rail transit system The noise inside the train the volume of glass insulation 随着城市轨道交通系统技术的不断发展,城轨车辆的舒适性也在不断的提升。车内噪声的优劣是影响列车舒适性的重要指标。车窗作为影响车内噪声的关键因素,便成为了城轨车辆隔声研究的重要对象。 城轨车辆的车窗按结构型式一般分为单元组合式车窗和粘接式车窗,无论车窗的型式如何变化,玻璃组成作为车窗上的主要部件,在车窗的隔音性上起到了至关重要的作用。 图1 地铁车窗 1 玻璃隔声计算现状 隔声量的计算方法多种多样,其中有公式计算法、图线判断法、平台做图法、隔声指数法、实测图表法。 对于幕墙、门窗等外维护结构,国际、国内众多声学专家推荐并普遍采用的公式汇总如下。 (1):计算单层构件时采用: R=13.5lgm+13 (公式一) 上面公式中: R:单层玻璃的隔声量; m:构件的面密度; (2):计算中空或夹层构件时采用: R=13.5lg(m1+m2)+13+ΔR1 (公式二) 上面公式中: R:双层玻璃结构的隔声量; m1,m2:组成构件的面密度; ΔR1:双层构件中间层的附加隔声量: 对于PVB膜,当膜厚为0.38时取4dB; 当膜厚为0.76时取5.5dB; 当膜厚为1.14时取6dB; 当膜厚为1.52时取7dB; 对空气层,按“瑞典技术大学”试验测定参数曲线选取,在空气层为100mm以下时,附加隔声量近似等于空气层厚度的0.1; (3):计算中空+夹层构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式三) 上面公式中: ΔR1:构件空气层的附加隔声量; ΔR2:构件PVB膜的附加隔声量; 其它参数可以参看双层玻璃构件; (4):计算三片双中空构件时采用: R=13.5lg(m1+m2+m3)+13+ΔR1+ΔR2 (公式四) 上面公式中: ΔR1:构件空气层1的附加隔声量; ΔR2:构件空气层2的附加隔声量; 其它参数可以参看双层玻璃构件[1]。 经过现有多个城轨项目的真实情况对比,使用上述公式进行城轨车辆车窗隔音计算时,计算结果与实际测量值存在较大偏差。 2 样块试制及测试 为进一步提升城轨车辆车窗隔音计算的准确性,对各种规格的玻璃组成进行了样块试制并送噪声实验室进行数据测试。 2.1 样块试制 车窗玻璃的结构组成型式较多,针对120km/h速度等级以下的城轨车辆,车辆车窗玻璃组成主要有以下几种型式: 表1 玻璃组成的主要型式 序号 玻璃组成的主要型式 1 玻璃+空气+玻璃 2 玻璃+氩气+玻璃 3 玻璃+空气+LOW-E+玻璃 接下来针对广泛应用的3种型式的玻璃组成进行样块试制,试制的样块规格如下: 表2 玻璃样块试制 2.2 试验测试 在噪声实验室中对试制样块测试,并对测试数据与既有方案计算结果进行对比分析,结果如下: 表3 试制样块测试结果 从以上数据可知,使用既有的玻璃隔音计算方法求得的隔音量相较于实验室测量的隔音量均偏低。中空层越厚,差值越大,最大达3.99dB。 3 隔声计算公式优化 依据测试数据,并考虑氩气替代空气以及附加LOW-E膜的情况,经过多次优化,最终提出优化后计算公式如下: R=13.5lgm+15+ΔR1+ΔR2+ΔR3+ΔR4 =13.5lg(2.56*T1+1.07*T3)+15+ΔR1+ΔR2+ΔR3+ΔR4 该公式可适用于单层构件、中空(空气、氩气,下同)构件、夹层(PVB膜)构件、中空+夹层构件、三片双中空构件、附加LOW-E膜构件,ΔR1、ΔR2、ΔR3、ΔR4为附加隔声量,按实际情况进行添加使用。 R-车窗玻璃隔声量,单位:dB; m-复合玻璃面密度,2.56为玻璃密度, 1.07为PVB密度,单位:Kg/mm3; T1-玻璃累加厚度,单位:mm; ΔR1-中空层的附加隔声量, 单位:dB; T2为中空层厚度,单位:mm; 当T2<13mm时,ΔR1=0.1T2; 当13≤T2<30mm时,ΔR1=0.15T2; 当30≤T2<100mm时,ΔR1=0.1T2; ΔR2-PVB膜的附加隔声量,单位:dB; PVB膜厚度与其附加隔声量的对应关系如下: 表4 PVB膜厚度与附加隔声量关系 PVB膜厚度T3 单位:mm PVB膜的附加隔声量ΔR2 单位:dB 0.38 1.82 0.76 2.48 1.14 2.54 1.52 2.79 3.42 3.14 3.8 3.21 4.56 3.37 5.32 3.44 6.84 3.5 ΔR3-LOW-E膜的附加隔声量,单位:dB;ΔR3=0.5dB。 ΔR4-氩气的附加隔声量,单位:dB;ΔR4=0.4dB。 4 算法优化前后对比 采用优化后玻璃隔声计算的结果与既有的计算方式进行对比,结果如下: 表5 计算优化前后差值对比 通过上述优化前后玻璃隔音量计算结果,可以清晰发现优化后的计算方案与实验室测量的隔音量差值明显缩小,基本能控制在1dB以内。 4 结论 随着城市轨道交通的逐步发展,地铁项目越来越多,且速度越来越快,噪声问题将成为影响乘客乘车舒适性的重要因素。本文通过大量的试验数据,对既有的玻璃隔音量计算方案进行优化,提升了对于城轨车辆车窗隔音量的计算准确性。对于后续城轨车辆整体隔音量的预估有重要意义。

  • 标签:
  • 简介:摘要:变色玻璃可以随季节、气候及光照的变化调节太阳光的透过率,减少采暖和制冷能耗,是一种智能的节能玻璃,具有自动调节光透性的功能,拥有广泛的应用前景。本文介绍了变色玻璃在高速动车组上的应用、种类、工作原理和性能。

  • 标签: 变色玻璃 高速动车组 智能调光
  • 简介:摘要:随着社会经济的发展,建筑行业在工程项目的质量、美观性、功能、节能性等方面也提出了多样化要求。玻璃幕墙是种特殊的外立面围护手段,相较传统的建筑建造,采用玻璃幕墙的设计工程更为复杂,设计成本及材料使用相对较多。我国较少建筑师能充分理解和掌握玻璃幕墙,为此,对玻璃幕墙进行总结,以供幕墙设计师与建筑师交流,共同创造出更多具有艺术价值和使用价值的建筑。

  • 标签: 玻璃幕墙 建筑设计 应用
  • 简介:摘要:作为建筑工程施工体系中最重要的基础技术,加强玻璃幕墙施工能有效提升其整体的施工质量,保障相应施工活动能够更加高效稳定开展,达到预期的施工目标。在建筑工程项目施工活动中,通过做好建筑施工玻璃幕墙施工技术要点的分析,保障建筑工程项目整体施工质量和施工安全。因而,在建筑工程项目施工活动中,相应施工人员要加强施工过程管理,综合施工过程中最易出现的问题,采用更加科学合理的办法,有效解决相应问题,不断优化施工技术,提升其整体的施工质量。

  • 标签: 高层建筑 玻璃幕墙 施工技术
  • 简介:摘要:玻璃和铝板幕墙是现代高层建筑广为应用的建筑技术,它既可以使建筑工程的外表面绽放出艺术美感,还能附带融入多重使用功能。基于此,本文主要对玻璃和铝板材料应用于建筑幕墙的施工技术要点进行阐述,也强调了施工环节需要注意的材料质量控制问题。希望通过此文,能带给建筑行业一点理论启示,项目各参入单位能够群策群力完善工程设计,严密组织工程施工,建造出美观、实用、质量上乘的建筑工程。

  • 标签: 玻璃铝板幕墙 施工技术 要点控制
  • 简介:摘要:玻璃幕墙是一种由铝型材、钢型材以及玻璃等材料构成的建筑模块,主要用于建筑物的围护和装饰,常应用于建筑物作为结构装饰。具有良好的美化功能。基于此,本文就建筑工程玻璃幕墙施工技术进行简要探讨。

  • 标签: 建筑工程 玻璃幕墙 施工技术
  • 简介:摘要:汽车风挡玻璃装配工艺质量不合格会直接导致玻璃漏水问题,本文介绍了汽车风挡玻璃的装配工艺流程及规范,阐述了装配过程中的关键因素,采用全面质量管理理论五大因素分析方法,找到汽车风挡玻璃漏水的真正原因并提出解决方案。研究表明,在前期产品设计过程中,实施产品设计约束及工艺设计约束,可以提高淋雨合格率,避免后期市场上玻璃漏水问题,此研究思路及方法可以对解决漏水问题提供借鉴参考。

  • 标签: 汽车 风挡玻璃 漏水 工艺设计
  • 简介:摘要:文章结合实际,对玻璃纤维生产中的抗静电剂应用要点进行研究。首先阐述了抗静电剂在玻璃纤维表面中的作用机理,而后对常见的玻璃纤维抗静电剂种类进行分析,最后详细探讨玻璃纤维抗静电剂的使用原则以及使用要点,希望通过论述后可以给相关工作人员提供参考。

  • 标签: 玻璃纤维 生产过程 抗静电剂 应用要点
  • 简介:摘要:在高层建筑玻璃幕墙设计过程中,设计人员需要根据实际需求选择合适的设计方法,保证玻璃幕墙结构强度符合实际应用需求,并综合性考量防火、防雷、防震、防风等因素,以保障玻璃幕墙的整体质量。此外,高层建筑玻璃幕墙设计人员要具有较高的责任心,承担起设计师的基本义务,提高玻璃幕墙设计质量,使得高层建筑可以满足更多的实用需求。

  • 标签: 玻璃幕墙 高层建筑 设计方法
  • 简介:摘要:玻璃幕墙有着独有的色彩与光影视觉效果,而且它的外观造型变幻多样,所以吸引了很多的建筑设计师与业主,它是一种新型且高档的围护结构,随着它的认可度的提高,其在工程建筑中被广泛应用,它对建筑物品质以及城市景观美化的提高起到了积极的作用。目前,部分玻璃幕墙施工过程中存在一些质量问题,对建筑的外观以及使用造成了不同程度的影响。本文主要阐述了建筑玻璃幕墙施工技术中比较重要的技术环节。

  • 标签: 建筑 玻璃幕墙 施工技术
  • 简介:摘要:近年来,随着社会经济的与时俱进,对玻璃质量要求也越来越高,国内很多生产线进行技术改造升级,提升玻璃质量水平。针对某浮法玻璃有限责任公司生产线对玻璃质量的要求,通过对原料配料、窑炉、锡槽、工艺和生产控制系统等多方面进行研发和技术优化,以解决浮法玻璃本体缺陷和提高智能化水平为突破口,为生产高质量玻璃原片提供了基础条件和必要支撑。经过改造后在700t/d浮法玻璃生产线上应用,产品质量明显提高,单耗和排放下降,整体达到了国内先进水平。

  • 标签: 新型配料系统 微量秤 分层燃烧 玻璃缺陷
  • 简介:摘要:建筑膜结构材料是当下建筑行业常用的五种建筑材料之一,也是最新型的材料。建筑膜结构材料在实际应用后的寿命较长,且具有多种性能优势。本文主要是分析了玻璃纤维-PTFE建筑膜结构材料的特征及其制备工艺。

  • 标签: 建筑膜结构材料 PTFE 玻璃纤维
  • 简介:摘要:玻璃固化厂的生产过程中远距离操作属于运行、维护的重点部分、难点部分,如果不能保证远距离操作的合理性,将会影响玻璃固化厂的生产效果、维护水平,对其长远发展造成不利的影响。因此在玻璃固化生产期间应重视远距离操作处理、维护处理,增强标准化程度,确保远距离操作效果、维护水平,为玻璃固化厂生产水平的提升提供基础保障。

  • 标签: 玻璃固化 远距离操作 维护方法
  • 简介:摘要: 建筑行业在我国各方面快速发展的推动下取得了较大进步,其规模在不断扩大,人们对其质量及美观等方面的要求也有明显的提高。建筑工程中玻璃幕墙的使用能为人们提供舒适的居住及工作环境,深受人们的喜爱。因此,建筑装饰玻璃幕墙施工技术得以广泛应用,发挥着极为重要的作用。有关建筑施工人员应严格按照有关标准要求进行实际操作,为玻璃幕墙施工质量提供有力保障。

  • 标签: 建筑装饰 玻璃幕墙 施工技术
  • 简介:摘 要:伴随着社会经济的快速发展与我国综合国力的不断加强,玻璃在建筑工程中光学性能的好坏不仅直接影响着建筑施工的整体质量,同时也关系到住户后续的使用效果,这也说明玻璃在建筑工程项目中的地位十分重要。而作为当前建筑工程领域中的新型玻璃材料,中空玻璃凭借其良好的密封性、抗紫外线能力等诸多优势,深受人民群众和建筑工程领域的青睐。对此本文针对当前中空玻璃实际应用标准进行分析,并提出科学合理的光学性能检测方法。

  • 标签: 中空玻璃 建筑工程项目 光学性能检测 可见光透射比
  • 简介:摘要:文章结合实际,对建筑门窗玻璃纤维增强塑料的应用情况进行研究。首先阐述玻璃纤维增强塑料的性能特点,而后在论述特点的同时对玻璃纤维增强材料在建筑门窗中的应用情况进行探讨,希望通过分析后能够给相关领域的工作人员提供参考。

  • 标签: 建筑门窗 玻璃纤维 增强塑料 应用
  • 简介:摘要:以融侨江滨广场工程建设为背景,介绍了玻璃幕墙擦窗机轨道安装的关键技术,有效保证了玻璃幕墙擦窗机轨道的安装精度,取得了良好的效果,可为今后类似工程施工提供参考及借鉴经验,具有良好的推广应用前景。

  • 标签: 玻璃幕墙 擦窗机 轨道安装 预埋件安装 测量控制
  • 简介:摘要:近年来,随着经济的发展和社会的进步,我国现代建筑学科的产生和发展,人们的审美能力普遍提升,文化思想潮流带动设计风格不断变化,外立面装饰和建筑美感被人们广泛关注。玻璃幕墙是种特殊的外立面围护手段,相较传统的建筑建造,采用玻璃幕墙的设计工程更为复杂,设计成本及材料使用相对较多。我国较少建筑师能充分理解和掌握玻璃幕墙,为此,对玻璃幕墙进行总结,以供幕墙设计师与建筑师交流,共同创造出更多具有艺术价值和使用价值的建筑。

  • 标签: 玻璃幕墙 建筑设计 应用