学科分类
/ 7
140 个结果
  • 简介:以F127和CTMABr为模板,采用一步法经水热合成了巯基(~SH)修饰的新型介孔吸附,并将其应用于水溶液中Ag+的去除研究。分别考察了初始pH值、振荡时间、Ag+初始浓度和金属离子竞争对介孔吸附性能的影响。结果表明,在pH5~6的范围内该吸附刺Ag+吸附量最大(Q=2.998mmol/g),其吸附机理是巯基(-SH)与Ag+的离子交换和配位化学吸附反应。在Cu2+、Ni2+Co2+和Pb2+等竞争性金属阳离子存在的情况下,Ag+去除率仍然高达90%以上。该介孔吸附对Ag+具有较高的吸附效率,其吸附符合Langmuir模型。

  • 标签: 介孔 吸附 重金属 银离子 吸附量
  • 简介:采用浸渍法制备了不同La掺杂量的Ni—SiO2催化,研究了La掺杂量对Ni—SiO2催化的Ni活性金属粒径、还原性能、甲烷催化裂解寿命以及反应后生成碳纤维的影响。结果表明:La、Ni物质的量比由0增长至0.3时,Ni-SiO2催化的寿命显著提高,而当La、Ni物质的量比由0.3增长至0.6时,催化寿命在一定程度上略有降低;La、Ni物质的量比由0增长至0.6时,还原后催化Ni金属的平均粒径从26.43nm不断降低至10.57nm。不同La掺杂量Ni—SiO2催化甲烷催化裂解过程中Ni金属平均粒径变化趋势明显不同,n(La):n(Ni)=0的Ni—SiO2催化随反应进行Ni金属平均粒径不断降低,而n(La):n(Ni)=0.3的Ni—SiO2催化随反应进行Ni金属平均粒径则不断升高。碳纤维形态受掺La掺杂量影响较大,随La、Ni物质的量比由0增长至0.3,反应过程中生成的碳纤维管径变粗,而随La、Ni物质的量比由0.3增长至0.6,碳纤维变短。

  • 标签: 甲烷催化裂解 Ni—SiO2 LA掺杂
  • 简介:制备了一种新颖的反应型阻燃,(4-二乙氧基磷酰基羟苯氧基)(4-羟基苯氧基)环三磷腈(EPPZ),其特征通过FTIR,^31P-NMR,^1H-NMR分析表征,实验制备的(脂肪族磷酸酯)环三磷腈含有不同的磷组分。环三磷腈聚氨酯(EPPZ-PU)由EPPZ、聚丙二醇、1,4-丁二醇、2,4-甲苯二异氰酸酯合成,其特征通过FTIR、TGA、DSC、限定氧指数(LOI)和拉伸强度来表征。结论证明,与纯的聚氨酯相比,用此方法合成的含EPPZ聚氨酯具有较高的玻璃化转变温度,较高的拉伸强度,较低的降解温度,较高的残炭率。聚氨酯在不同降解阶段的活化能用Ozawa方法计算。随EPPZ含量增加,聚氨酯LOI值增加,并且表现出明显的燃-熄行为。实验同时发现聚氨酯的阻燃作用最初发生在凝聚相。

  • 标签: 反应型阻燃剂 实验制备 聚氨酯 磷酸酯 脂肪族 磷腈
  • 简介:采用超声机械法制备纳米Al2O3、SiO2、MgO等颗粒,并对其进行化学修饰,使其稳定地分散在基础油中,获得自修复纳米润滑添加。通过四球试验与止推圈试验考察摩擦学性能。试验结果表明:自修复纳米润滑添加具有良好的分散稳定性、抗磨减摩性和自修复性。

  • 标签: 润滑添加剂 自修复 摩擦学
  • 简介:据报道,一个由中美科学家组成的研究小组研发出了一种新的催化,它能将纤维素这种生物质中最常见的形式直接转化为一种有用的化学物质,即乙二醇。关键的是,转化作用的原材料不是粮食,因此不会威胁到粮食安全。

  • 标签: 乙二醇 纤维素 金属催化剂 直接转化 科学家 碳化钨
  • 简介:钛酸锶钡(BST)陶瓷是一种性能优异的电容器材料、热敏材料和铁电压电材料,具有非常广阔的应用领域。采用溶胶-凝胶法合成了Ba0.6Sr0.4TiO3纳米粉体,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、激光粒度分析仪对粉体的物相组成、颗粒大小和形态进行了分析,利用红外光谱仪(FT~IR)研究了表面活性在合成纳米Ba0.6Sr0.4TiO3过程中的作用,并重点考察了表面活性对Ba0.6Sr0.4TiO3粉体性能的影响。研究结果表明,通过添加适量的表面活性能有效改善纳米钛酸锶钡粉体的表面性能,使纳米钛酸锶钡具有较好的分散性,可充分发挥材料的纳米效应。

  • 标签: 钛酸锶钡 溶胶-凝胶法 表面活性剂 纳米粉体
  • 简介:2007年9月10日,上海—今日,帝斯曼集团宣布在中国的首家高科技浸润厂隆重开幕。位于上海星火开发区的新工厂将生产一系列以Neoml为商标的浸润。Neoml系列产品主要应用于玻璃纤维单丝表面涂布,提升玻璃纤维性能。此次新厂开幕将有助于帝斯曼更好地携手中国及亚洲地区的客户,度身打造创新、优质的增强玻璃纤维解决方案,

  • 标签: 增强玻璃纤维 创新理念 浸润剂 帝斯曼 产业发展 中国
  • 简介:纳米二氧化钛光催化氧化方法是近年来发展起来的新型水处理技术,具有绿色环保、适用面广、催化效率高等优点。文中主要综述了纳米二氧化钛光催化氧化技术在废水处理应用领域中所取得的研究成果,介绍了其光催化原理及技术特点,并对光催化技术的发展前景作了展望。

  • 标签: 纳米二氧化钛 光催化 有机物降解 废水处理
  • 简介:随着环境意识的增强和对有限自然资源认识的加深,为了减少对化石能源等不可再生资源的依赖,燃料电池作为高效和低污染发电装置研究受到高度关注和重视。但是,燃料电池催化成本高、反应活性低和稳定性差等缺点仍然严重制约其商业化和广泛应用。

  • 标签: 纳米催化剂 金属纳米颗粒 制备 设计 复合 不可再生资源
  • 简介:介绍了1种新型助剂,螯合剂2,4-戊二酮。研究了这种助剂在不同酸性的不饱和聚酯树脂固化体系中的作用。并介绍了这种助剂在RTM成型工艺中的应用。

  • 标签: 2 4-戊二酮 不饱和聚酯树脂 促进剂 缓凝剂
  • 简介:吸收式制冷技术具有环保、节电和利用余热等不可替代的优点,在我国应用广范.溴化锂机组的吸收器是系统中换热面积最大、成本最高的换热部件,采用添加强化吸收器传热传质是一种不可缺少的手段.但是添加的强化机理却一直没有研究清楚,各国对添加的强化机理的研究很重视,已经有了不少研究成果,本文对国外添加对溴化锂制冷机吸收器的强化机理的研究进行简要介绍和分析.

  • 标签: 表面活性剂 溴化锂吸收式制冷机 吸收器 添加剂 强化机理 滴重法
  • 简介:研究了高纯煤沥青作为粘结应用于高纯石墨制备过程中的混捏、辊压工艺,对高纯煤沥青各组分及结焦值进行了测定,考察了配料比、混捏温度、混捏时间、辊压温度、辊压次数等因素对混捏、辊压过程中物料的均匀程度、塑性及成型效果的影响。确定了最佳工艺条件:混捏配料比为1:0.8、混捏温度为140℃、混捏时间为lh、辊压温度为140℃、辊压次数2~3次。结果表明,采用高纯煤沥青作为粘结应用于高纯石墨制备过程中的混捏、辊压工序,其各项性能指标满足国内外煤沥青粘结指标的要求,不仅具有较强的粘结性能,且杂质含量极低,能够满足高纯石墨制备对原料纯度的要求。混捏及辊压工序直接关系到后续高纯石墨产品的成品率。在此条件下,所得物料混合均匀、塑性好、糊料成型效果好且产品表面光洁致密度高,为下一步等静压提供了合格的原料。

  • 标签: 高纯煤沥青 粘结剂 混捏 辊压 高纯石墨
  • 简介:聚丙烯在整个塑料包装市场中有着举足轻重的地位。在挤出吹塑成型市场中,聚丙烯的使用量仅次于高密度聚乙烯(HDPE)。与其他包装产品相比,这一优势却很难在挤出吹塑成型容器中得到体现。因为挤出吹塑成型容器所适用的低压与模具表面粗糙度无法形成最理想的壁表面。美利肯新型树脂设计

  • 标签: 挤出吹塑成型 吹塑成型工艺 透明剂 表面粗糙度 应用 高密度聚乙烯
  • 简介:用生物降解聚合物(BP)制备复合浸渍纸,研究了其物理性能及生物降解性。将原纸浸在BP乳液中,于100℃固化20min。相同质量复合浸渍纸其湿强度随BP含量的增加显著增加,干强度仅有一定程度的增加。添加0.5%通用造纸湿强——聚酰胺环氧氯丙烷(PAE)树脂可增加复合浸渍纸的湿强性;其湿强度可达9.3MPa;所用BP与纸的比例为20:80。进一步提高性能可再加入聚乙烯基胺(PVAm)。当BP与纸的比例同样为20:80时,添加0.2%PVAm和0.5%PAE的复合浸渍纸的湿强度(拉伸)可提高27%,只加0.7%PAE复合浸渍纸的湿强度仅提高了3%~4%。由于PAE和PVAm的加入,复合浸渍纸的生物降解被推迟,但埋在土中60天后,复合浸渍纸的失重率可达到90%。未用添加的复合浸渍纸达到同样的失重率仅需45天,30天后还有原纸存在。

  • 标签: 可生物降解 复合 聚乙烯胺 湿强 生物材料
  • 简介:利用制浆造纸废料碱木质素制备了木质素基磷酸酯季铵盐两性表面活性,以此表面活性为结构导向,采用直接沉淀法一步制备了纳米氧化锌材料,XRD、EDS和SAED分析结果表明,产物为高结晶度的多晶六方纤维锌矿氧化锌,粒径在30nm左右;SEM和TEM分析可知,所合成的纳米氧化锌为具有粒子-片层-粒子三级结构的纳米材料,氧化锌主要沿着[101]和[100]晶面生长。同时对所制备的纳米氧化锌进行了紫外光催化降解亚甲基蓝的研究,实验结果显示,该纳米氧化锌有较好的光催化活性。

  • 标签: 木质素基磷酸酯季铵盐 纳米氧化锌 光催化 直接沉淀法
  • 简介:以CNTs和A1203为载体担载镍催化用于二氧化碳甲烷化反应,并研究Ce助剂对Ni/CNTs和Ni/Al2O3的催化的催化性能的影响,通过程序升温还原(H2-TPR)、X射线衍射(XRD)、程序升温脱附(H2-TPD)对催化进行表征,结果表明,以XCNTs载体的催化性能明显优于以Al2O3为载体的催化;以CNTs载体催化的镍物种易于还原,同时,Ce的加入进一步促进了镍物种的还原,提高镍物种分散性。这些结果最终使Ni—Ce/CNTs在CO2甲烷化中表现出优异的催化性能。

  • 标签: 碳纳米管 甲烷化 二氧化碳