学科分类
/ 25
500 个结果
  • 简介:摘要: 随着社会的发展与经济的进步,在一定的程度上促进了我人们生活水平的提高,使得用电量的需求在不断的提高,推动了我国电网建设中规模不断的扩大。就电力工程发展来看,配电变压在电力设施中得到广泛的应用,具有较多的种类数量,同时对于节能减排起到了重要的作用。在配电变压性能中应该要所提高,降低能源的损耗,这样在一定的程度上是能够提高供电系统的效率。配电变压在电力工程中运行不仅可以降低成本,提高整体的经济效益,进而达到节能。因此,本文主要就是笔者结合自身工作经验进对配电变压节能措施进行分析与研究,仅供参考。

  • 标签: 配电变压器 节能措施 分析研究
  • 简介:摘要:电厂 600MW亚临界 π型火焰锅炉设计煤种为高硫无烟煤,为满足 NOx环保排放要求, 2013年在机组 A修过程中,对 3号锅炉实施了脱硝改造,在锅炉尾部烟道空气预热前加装了脱硝系统,同时,为防止空气预热冷端腐蚀,对空气预热冷端换热波纹板进行了防腐蚀的搪瓷材料改造。

  • 标签: 脱硝系统 空气预热器 堵塞 原因 措施
  • 简介:

  • 标签:
  • 简介:摘要:浮空雷达载荷是以系留气球以及飞艇等浮空为主要载体,具备动力系统,可在遥控或自动控制模式下于空中长时间工作的一种现代化雷达升空平台以及监控系统。具有不受地面气流、地球曲率等因素干扰影响的性能优势,在军事领域中得到广泛应用,也是当前我国国土防空探测网络体系的主要构成部分。本文对浮空雷达载荷系统的未来发展趋势、国外相关研制计划,以及在军事领域中的应用价值进行阐述,以供参考。

  • 标签: 浮空器 雷达载荷 未来发展 军事应用
  • 简介:摘要:随着航空发动机技术的不断发展,发动机各项技术指标不断提升。其中发动机进气压力就是其中一个重要技术指标。因为高推重比发动机在其大功率工作时,对进气压力有较高的需求。而为实现这一要求理想的扩压是前提。因此在发动机研制和制造过程中,扩压的加工尤为重要。而现实情况是在科研生产过程中,扩压经常出现这样或那样的问题,诸如变形、过切等等。要解决此类问题,就要优化扩压加工工艺以提升产品质量。

  • 标签: 发动机 扩压器 工艺提升
  • 简介:摘要:限速作为电梯安全装置,可以在电梯超速或者下坠时保障电梯的安全可靠的运行,所以电梯限速校验是电梯检验项目的重中之重。因此要高度重视电梯限速校验中面临的困境与解决措施。基于此,本文先分析了限速的工作原理,然后对电梯限速校验面临的困境及产生困境的原因进行了研究,最后提出了相应的解决措施。

  • 标签: 电梯限速器 校验 困境 解决措施
  • 简介:海南松涛发电有限公司和庆电站 海南省儋州市 571700 摘要:高压电线是保证电能远距离传输的基础。它能有效地降低输电过程中的损耗,实现输电的稳定性和安全性。但是,日常家用电器不能直接使用高压线,需要使用变压将高压线的电压转换成 220伏以内的低压,这样在家中转换成 220伏以内的低压时就可以安全使用,变压不仅具有转换电压的功能,而且可以将电能进行分配,以满足人们的用电需求。然而,受各种因素的影响,变压在安装和使用过程中经常出现各种故障问题。

  • 标签: 变压器 检修 维护
  • 简介:摘要:限速是电梯最重要的安全保护装置之一,当电梯在运行中发生超速或者失控的情况时,限速会和安全钳发生联动,使电梯轿厢制停在导轨上,以保护电梯使用者的生命安全。因此,电梯限速有着重要的作用。要想确保其处于安全、正常运行状态,必须重视其检测工作,本文主要分析了电梯限速现场检测技术。

  • 标签:
  • 简介:        摘要:本文介绍电力变压的继电保护配置。用于输配电系统升、降电压的电力变压是现代电力系统中的重要电气设备之一,其安全运行直接关系到整个电力系统的连续稳定运行,可靠性要求很高。如果电力变压发生故障,将会造成很大的影响。因此要加强其保护,为其配置性能良好,动作可靠的继电保护装置,以提高电力系统的安全运行。电力变压的继电保护分为电量和非电量两类保护,在本文中,我们重点对这两类继电保护配置进行介绍,希望对大家有所帮助。         关键词:电力变压;继电保护配置;电量和非电量         电力变压继电保护配置         1.引言         电力变压的不正常工作状态包括:由于外部短路或过负荷引起的过电流、油箱漏油造成的油面降低、变压中性点电压升高、由于外加电压过高或频率降低引起的过励磁等。         为了防止电力变压在发生各种类型故障和不正常运行时造成不应有的损失,保证电力系统连续安全运行,电力变压一般应装设以下继电保护装置:         ( 1)防御变压油箱内部各种短路故障和油面降低的瓦斯保护(通过气体聚集量及油速整定)、温度保护(通过温度高低)、油位保护(通过油位高低)、防爆保护(压力)、防火保护(通过火灾探头等)、超速保护(速度整定)等。         ( 2)防御变压绕组和引出线多相短路、大电流接地系统侧绕组和引出线的单相接地短路及绕组匝间短路的(纵联)差动保护或电流速断保护。         ( 3)防御变压外部相间短路并作为瓦斯保护和差动保护(或电流速断保护)后备的过电流保护(或复合电压起动的过电流保护、负序过电流保护)。         ( 4)防御大接地电流系统中变压外部接地短路的零序电流保护。         ( 5)防御变压对称过负荷的过负荷保护。         ( 6)防御变压过励磁的过励磁保护。         2.电力变压的电量和非电量保护介绍         电力变压的保护分为两大类,电量保护和非电量保护。         所谓电量保护,则是依据电力系统发生故障前后工频电气量如电流、电压、功率、频率等变化的特征为基础构成的保护。电量保护由继电保护厂家完成,主要通过变电站内的 CT以及 PT等配置完成。虽然变压也配置了套管式电流互感,但考虑到保护范围,套管式电流互感仅仅作为电量保护的辅助配置。         所谓非电量保护,就是非工频电气量反映的故障动作或发信的保护,一般是指保护的判据不是电量(电流、电压、频率、阻抗等),而是非电量,如瓦斯保护(通过气体聚集量及油速整定)、温度保护(通过温度高低)、油位保护(通过油位高低)、防暴保护(压力)、防火保护(通过火灾探头等)、超速保护(速度整定)等。非电量保护附件由变压厂配置,并将非电量保护信号集中于变压本体端子箱内,提供连接接口给变压继电保护厂家,由继电保护厂家将非电量保护信号连接到专门的非电量保护屏柜中。         3.电力变压电量保护配置         ( 1)差动保护:变压的差动保护是变压的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压单相匝间短路故障。 在变压的两侧均装设电流互感,其二次侧按循环电流法接线,即如果两侧电流互感的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间串联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感的二次电流差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡电流流过,此时流过继电器的不平衡电流应尽量的小,以确保继电器不会误动。 当变压内部发生相间短路故障时,流过继电器的电流大于差动保护整定值,继电器可靠动作。变压差动保护的范围是构成变压差动保护的电流互感之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。         ( 2)电流速断保护:变压电流保护分为无时限电流速断和带时限电流速断,为变压主保护,用于保护变压绕组和引出线多相短路、大电流接地系统侧绕组和引出线的单相接地短路及绕组匝间短路。         ( 3)过电流保护:保护变压外部相间短路并作为瓦斯保护和差动保护(或电流速断保护)后备保护。         ( 4)零序电流保护:保护大接地电流系统的外部单相接地短路。         ( 5)过负荷保护:保护对称过负荷,仅作用于信号。         ( 6)过励磁保护:保护变压的过励磁不超过允许的限度。         4.电力变压非电量保护配置         ( 1)瓦斯保护:瓦斯保护是变压的主保护,能有效地反应变压内部故障。瓦斯保护分为变压主体瓦斯和有载调压开关瓦斯保护。主体瓦斯保护分为轻瓦斯保护及重瓦斯保护两种。轻瓦斯保护作用于信号,重瓦斯保护作用于跳闸,切除变压。当变压内部发生         轻微故障或异常时,故障点局部过热,引起变压油膨胀分解,油内的气体被逐出进入气体继电器内,当气体量达到整定值时继电器动作发出信号。当变压油箱内发生严重故障时,故障电流及电弧是变压油大量分解,产生大量气体,油箱内油流涌动,油流冲击挡板。当油箱内油流涌动,导油管内油流速达到整定值时继电器动作跳闸切除变压。有载调压开关瓦斯保护又称为开关流速保护,作用于跳闸,切除变压。有载开关保护继电器流速整定是由开关厂家确定的。         ( 2)油位保护:保护变压内部油面降低。变压运行中,如果发生漏油事件,或因为其他原因造成油箱内油面下降,储油柜内的油会通过连管补充到油箱内。当储油柜内的变压油减少到油位计最低油位时,油位计动作发出告警信号。当储油柜、管道和气体继电器内的油都被排空时,双浮子继电器的下浮子下沉,通过下浮子的运动启动跳闸触点,切除变压。         ( 3)压力释放保护:压力保护也是变压油箱内部故障的主保护。当变压发生内部故障时,变压油箱内压力会急速升高,如果不能在短时间内快速释放油箱内部压力,变压将有爆炸的危险。压力释放阀可以在极短的时间内及时释放油箱内部的压力,同时动作于跳闸,切除变压。压力释放阀是油箱内部压力达到其整定值动作的保护装置,而速动油压继电器则是以油箱内部压力变化速度作为动作信号的一种保护继电器,速动油压继电器为可选配置附件。         ( 4)温度保护: 变压的主要绝缘是 A级绝缘,运行中如果出现温度过高的情况,则会缩短绝缘寿命,加速绝缘老化。故变压要装设温度保护,即上层油温保护和绕组温度保护。温度保护分为两级动作,即温度高报警和温度超高跳闸。变压冷却方式为油浸风冷时,当温度超过一定值时,温度计触点闭合启动风机,降低变压温升。温度保护中,绕组温度计是间接测量,在需要准确并直接测量绕组温度时,可以配置光纤测温装置。         5.总结         电力变压是现代电力系统中重要设备,运行可靠性要求很高。如果发生故障,将会影响日常生产和生活,从而造成巨大的经济损失。因此在变压保护设计中,继电保护是必须考虑的重点。上文介绍的电量和非电量保护囊括了变压器重要的继电保护,可在具体项目中根据实际需求选择需要配置的保护,在特定项目中需要根据协议要求增加其他保护,为变压的可靠运行保驾护航。         参考文献:         [1] 电力系统继电保护实用技术问答(第二版) 中国电力出版社,         [2] 李春明 . 关于电力变压继电保护设计的探析 [J]. 黑龙江科技信息 ,2017(03)         [3] 王爱心 . 浅谈电力变压继电保护设计 [J]. 中国新品 ,2017(08)

  • 标签:
  • 简介:

  • 标签:
  • 简介:摘要:电气设备的工作状态与热有密切的联系,接触不良、绝缘裂化或磁通路等不同类型的故障都会以发热的形式表现出来。这种潜伏性故障如不能及时的发现,故障扩大蔓延后会造成巨大的损失。红外测温技术刚好以非接触式的测量技术可以有效的对运行中高电压、大电流等电气设备起到了良好的热状态监测作用。

  • 标签: 红外测温 高压设备 热状态监测
  • 简介:

  • 标签:
  • 简介:摘要:社会的不断进步带动了经济高速发展,经济的高速发展促进了人们生活水平的不断提高,人们在不断提升自己生活水平的同时,对电力企业重视程度有了很大提升,想要保证电力企业的质量,要求我们必须要掌握前卫和精良的实施电子电力变压与常规电力变压并联技术,而保证实施电子电力变压与常规电力变压并联技术的良好实施,要求我们必须要保证质量,在允许的范围里面很好的控制实施并联技术质量,对电子电力变压与常规电力变压并联技术进行探索。

  • 标签: 电力企业 电子电力变压器 常规电力变压器 并联技术
  • 简介:摘 要:科学技术的迅速发展,促使着人们逐渐加大对电力企业的重视力度,同时竞争激烈的经济社会也对电力企业提出了最新的要求,不仅要求电力企业能够实现稳定性的供电项目,而且还能够确保整个供电的质量。在电网中,电力变压并联运行的现象尤为常见,其对减少备用总容量及提高运行效率和供电可靠性等具有重要作用。

  • 标签: EPT 常规电力变压器 并联
  • 简介:【 摘要 】 :从密集烤房控制的内置的温度控制,集成内置变频、物联网功能、燃料消耗及用电量,防堵转功能、抗干扰等方面进行了研究。

  • 标签: 密集烤房 内置变频器 技术关键
  • 简介:【摘 要】 EPT是一种新的电子电力变压。在将EPT引入电力系统时,需从与常规电力变压的并联角度对EPT的并联工作加以考虑。但常规电力变压存在一定的不可控性,当短路阻抗不等时,便会引起电力变压不均匀分配负荷并产生环流,因此应在一定条件下对其开展变脸运行。科学技术的迅速发展,促使着人们逐渐加大对电力企业的重视力度,同时竞争激烈的经济社会也对电力企业提出了最新的要求,不仅要求电力企业能够实现稳定性的供电项目,而且还能够确保整个供电的质量。因此作为新时代的电力企业,要确保供电稳定性与有效性,就务必要深入地了解与掌握常规电力变压与电子变压的并联技术,并将其灵活运用至供电项目上,从而在完成供电的同时提升电力企业的技术水平,增强企业的核心竞争力。

  • 标签:   EPT 常规电力变压器 并联
  • 简介:        摘要:电压互感是一种电能测试设备,其所发挥的作用是保护电力系统的续电并用于计量电能。电压互感对电力系统非常重要,不仅可以保证电力系统的安全可靠性,而且能够确保其经济型。当前中国的发展速度不断加快,不仅电能的需求量大,而且对电能的质量也有更高的要求。这就需要提高电压互感的制造工艺技术,积极采用先进的设备,使其性能充分发挥出来。应用电容分压的电子式电压互感是非常必要的。本论文着重研究基于电容分压的电子式电压互感问题。         关键词:电容分压;电子式;电压互感         一、基于电容分压的电子式电压互感的结构设计         (一)电容分压的设计         电容分压运行的过程中,采用串联电容器或者并联电容器进行分压可以获得一元信号。从技术角度而言,主要的问题是存在于 :电容分压通常是在室外安装的,如果室外环境的温度变化幅度比较大,分压在运行的过程中,就会影响分压的稳定性,导致测量中出现偏差。当精准度下降的时候,分压电容器就会有相位差产生。当出现这种现象的时候,就可以采用并联电容器的或者串联电容器的方法进行分压处理,就可以削弱温度变化对分压的影响 [2]。电压信号信息融合的时候,温度是作为参数存在的。通过对温度的测试,就可以对高压电器运行中的温度情况以及对运行造成的问题深入了解,当然温度也可以看做是对高压电参数测量结果评。采用上面的方法就可以有效地解决温度变化问题,避免对系统造成不良影响。         (二)电子高压侧单元的设计         从系统的角度而言,电子高压侧单元类似于外核,从其构成上来看,主要包括预处理信号模块、光发射模块、两个单片机以及 A/D转换、 FIFO存储等等,它们都有各自的功能,都发挥着重要的作用。要保证系统的实时性,就需要发挥两个单片机的作用,其中的一个单片机所发挥的作用是采样,还可以对 FIFO数据暂时存放;另一个单片机所发挥的作用是对数据信息的传输,其所发挥的功能是将光线充分利用起来,提高 FIFO数据的传输速度 [3]。除了这项功能之外,电子高压侧单元还可以在数据信息传输的过程中同时传输主控室温度信号,就可以有效地控制温度传感。电子高压侧单元是将 16位 AD高速采样芯片充分利用起来,用于提升系统的采样精度。此外,还需要根据实际需要尽可能将电子高压侧单元处理工作优化,提高处理速度,保证处理的结果符合要求,还要提高抗干扰能力。         (三)低压侧主控室的设计         在设计低压侧主控室的时候,主要的工作内容是对光信号的接收,进行电转化和光转换。对于低压侧主控室的环境温度也要有效控制,处理好温度数据,还要处理好相位补偿问题,对电压信号进行融合处理,处理好电压数据 [4]。低压侧主控室中,系统对于温度不具有很高的敏感度,即温度的影响降低,分压相位差也能够得到有效补偿,由此提高了系统的测量稳定性,而且也提高了测量精准度。低压侧主控室当中,可以将被测电压的波形以及所获得的计量值充分利用起来,将便捷快速系统结合到续电保护系统当中,将两者集成为一个整体。低压侧主控室采的运行中,主要利用了哈佛结构的芯片和专用硬件乘法器的芯片,所以,其具有操作流水线的特点,接口的使用非常方便,运算的速度比较快。程度的编程方面来看,操作非常简单,而且具有良好的稳定性 [5]。         二、对基于电容分压的电子式电压互感进行结构分析   (一)电容分压    对整体电子式电压互感的结构进行研究,其中电容分压占据着重要的功能作用。但由于其工作原理具有一定特殊性,所以电容分压便会受到环境等各方面影响进而产生相应的功能缺陷。当电容分压被安装与室外时,若温度出现变化,则电容分压便很可能随着其变化能降低分压比的稳定性,进而使电流测量的准确程度也大幅度下降。但是技术人员可以利用电容分压所具有的相位差功能,减少温度原因所造成的影响,以此保证电流测量工作的准确度。除此之外,由于电压信号的融合工作是高电压系统的一种,所以在这一环节中,温度便成为一项重要参数。在日常工作中,技术人员可通过温度,观察高压电器的运行情况,因此温度参数便成为测量高压电参数结果的重要依据,而上述该些功能便是电子式电压互感中电容分压的主要作用,其不仅能够确保互感的正常运转,同时还能为高压电的测量工作提供一定帮助。   (二)电子高压测单元    电子高压侧单元中主要包含的部件有:预处理信号模块、 A/D转换、光发射模块、 FIFO存储和两个单片机。其中预处理信号模块,负责对相应信号预处理工作,其不仅保证电子高压测单元能够正常进行信号传输工作,同时还能对所接收的信号信息进行相应处理,以此保证电子高压侧单元的正常运转。而 A/D转换,便是通过其内部的 16位高速采样芯片,对工作系统所采集的数据进行转换,以此确保电子高压侧单元数据的准确度能够得到提升。光发射模块,主要负责将相应信号信息转换为光数据,并通过该模块发射至目标点。 FIFO存储,对相关数据起到存储功能,以此为技术人员提供参数信息。而单片机是电子高压侧单元中的重要组成部分,其不仅该模块中的核心,同时也是系统运转的支撑点,对该两个单片机给予处理,可有效提升电子高压侧单元的系统实时性。   (三)低压侧主控室    低压侧主控室是电子式电压互感中的重要信号处理部件,其不仅能够为互感接收相应的光信号,同时还能将光信号转换为电转化。除此之外,低压侧主控室还能够对电子式电压互感的温度数据进行处理,以及电压信号融合处理等工作,进而便凸显出低壓侧主控室在整体电子式电压互感中的重要性。如前文所述,若电子式电压互感受到环境温度影响时,其相应测试参数的准确度会随之下降,而在这一过程中,低压侧主控室便发挥出其应有作用,使环境温度影响得到有效控制,并对分压相位差进行补偿,进而使整体电子式电压互感的测量稳定性和精准性得到有效提升。所以当相关技术人员在研究电子式电压互感时,应当对其内部低压侧主控室加以重视,因为其主要负责电压互感的信号传输功能,所以其在整体电压互感其中具有一定关键性的作用。   (四)光纤传输    前文所述,电子式电压互感的信号传输方式为光纤传输,其具有绝缘性能好、不受电磁干扰、信号传输稳定以及传输周期短等优势,所以光纤传输便成为电子式电压互感的明显优势之一。同时,光纤传输功能的运用还能有效解决传统电磁式电压互感信号传输过程中所存在的系统传输矛盾、隔离矛盾等问题,至此便再次彰显出光纤传输的功能特点。通常情况下,光信号携带者电压测试结果、温度测试结果等相关信息,而该项数据由光纤传输,不仅能够实现低电压与高电压隔离传输的可能,同时还能使整体电压互感系统的安全防护性得到显著提升。其中光纤传输所具有的可靠性高、传输距离远、抗干扰能力强等优点,皆以其内部的单模光纤组件和高灵敏度光组件实现,该两项组件还有效减少光源、光功率不稳定等特殊情况的影响。         结束语:         通过上面的研究可以明确,中国的电力企业发展速度不断加快,传输电力容量也不断增高,对电压电网质量有了更高的要求。当前如果依然采用传统的电压互感,是无法满足电力系统的运行要求的,不仅在于其工艺技术不高,而且运行不稳定,缺乏安全可靠性。将光线结合到电压电容互感中,对于电能传输过程中所存在的干扰问题有效解决,使得压互感在运行中有更高的安全可靠性,为电力系统平稳运行创造良好的条件,有助于提高企业的经济效益。         参考文献:         [1] 电容分压型电子式电压互感传感特性研究 [J]. 江西科学 , 2017(01):58-59.         [2] 王晓明 , 周卫 . 基于 RTDS仿真的电子式电流互感暂态特性测试研究 [J]. 电工技术 , 2017(03):87-88.         [3] 李红 . 高压电容式电压互感的故障分析及防范措施 [J]. 电世界 , 2017(11):13-14.         [4] 关博 , 金钧 . 基于电阻分压的 27.5kV电子式电压互感的研究 [J]. 变频世界 , 2018(10):75-78.         [5] 魏明 , 秦猛 . 10 kV电子式电阻型电压互感屏蔽罩的设计 [J]. 高压电器 , 2017(09):161-165.         [6] 李宁 , 高飞 , 吴明锋 , et al. 电容式电压互感现场应用情况及故障分析 [J]. 山西电力 , 2017(06):58-59.

  • 标签:
  • 简介:摘要目的寻找利用加速轨迹日志评估多叶准直(MLC)性能的解决方案并对TrueBeam加速MLC评估。方法所有测量在不同机架/小机头组合下各测5次。用动、静态MLC构造宽度1 mm的狭缝,评估加速小野到位精度控制能力。由MLC重复运动评估其重复性。由MLC构造宽度1 cm的狭缝以不同速度由-7 cm匀速滑至7 cm处停止或立马匀速滑回,评估其匀速、变方向运动。由交叉运动评估其在复杂计划中的表现。结果动静态狭缝野MLC到位准确度高。重复性得机架0°、非0°时MLC误差频谱分布一致,绝对值差0.001 1 mm。机架0°、MLC速度由5 mm/s增至25 mm/s时,其均方误差(RMSE)由0.0150 mm增至0.0598 mm。机架非0°时,RMSE变化趋势一致,但绝对值稍大。MLC变方向运动引起的"超速"较其由静止启动时明显性低,速度在交叉前后无明显变化,速度在设定速度附近上下波动,且与机架角度无关。结论利用轨迹日志评估加速MLC性能的方法,能对TrueBeam加速MLC进行详细评估,可用于MLC快速质控。

  • 标签: 轨迹日志 加速器质控 多叶准直器
  • 简介:         摘要:高压断路是电气系统运行的重要执行元件,也是具备故障判断、故障检修和参数测量频次较多的一种重要电气设备。在社会经济的快速发展下,人们对供电质量提出了更高的要求。完善对电气设备的监测,确保断路的稳定运行已然成为相关电气工作者需要思考和解决的问题。但是从电气系统运行发展实际情况来看,电气系统高压断路在运行的时候往往会出现一些故障问题,严重制约了电气系统的稳定运行。为此,该文结合高压断路运行实际情况就怎样科学处理高压断路的应用故障进行策略分析。          关键词:电气设备;自动化;高压断路;监测          1. 高压断路在线监测技术发展          监测的指标有三相电流、电寿命状态及机械属性等。利用触头累计损耗量模型,能实现对断路机械属性与电寿命状态的在线监测。断路设备的机械属性有传动机构和储能电机状态,前者监测的主要内容以分合闸磁铁线圈的电流波形为主,后者的监测内容为日储能频次、单次储能时间长等。利用在线监测系统监测断路运行状态,能协助相关人员及时发现设备存在的机械故障隐患。保证高压断路产品在使用全寿命周期内的安全运行可靠性。          2. 断路常见故障          2.1 断路拒动故障          由于拒动后将会延长故障切除时间,除加重被控制设备的损坏程度外,极易扩大事故影响范围,可能使单条回路故障扩散至整个母线,甚至导致全站停电、电网震荡等,容易扩大为系统事故或大面积停电事故。          2.2 操动机构缺陷          (1) 气动机构。此类机构在上世纪 90 年代至 2010 年期间应用广泛,目前仍有大量老设备在运。此类机构往往因高压气体泄露导致频繁打压,甚至影响断路动作。          (2) 弹簧机构。对弹簧机构,其机械故障的主要原因常表现为弹簧卡涩不灵活,或锁扣调整不当。此处卡涩,既可能源于装配调整不当,也可能是因为维护不良所致。          (3) 液压机构。断路液压机构主要有液压氮气机构、液压弹簧机构两类,基本原理为利用液压油泵为氮气储压筒或弹簧储能,利用此能量完成断路动作。此类机构由于可储存较大的势能,断路动作时可提供更快的动作速度,故而常用于超高压、特高压电网设备中。但由于液压回路复杂、内部压力大,常出现液压油渗漏、压力不能保持等故障。          2.3 气体泄漏          例如:高压断路内绝缘气体的应用,近年来已取代绝缘油,成为断路领域最主要的绝缘和灭弧介质。然而,相较于绝缘油,气体更易泄漏,且由于气体本质具有无色、无味的特性,当其泄漏时隐蔽性较高,往往当发现时设备内压力已出现明显下降,影响断路绝缘及灭弧性能。          3 高压断路故障监测系统研究分析          高压断路故障监测系统应具有良好的监测性能和稳定性。此次设计的高压断路故障监测系统的硬件配置包括数据采集端口、模拟信号隔离、母版、电源板、计算机主机、上位机、扫描仪、串口、键盘、 A/D 高压断路转换接口及打印机等,可完成各路信号的调理和运算。采用高压断路 DSP 高压断路处理进行多监测量的监测,利用断路开断电流计算电寿命,实现采集和快速运算的双重功能,同时保证信号处理的快速性和准确性。通过 OPI 监测装置对系统进行监测,监测流程如图 1 所示。          由图高压断路 1 高压断路可知,具体监测流程:硬件系统通电后,通过串口从传感读取数据,采集相应的频率信号和数字量输入进行数据处理;把电压调至规定的范围进行数据输入,在硬件系统内进行频率转换和分析数据,最后把分析诊断的结果通过串口发送至上位机显示出来。          OPI 高压断路监测装置在预估数据的基础上,对采集的故障信号生成相应的网络图层,更改未出现故障时的结构配置,选取图层单元,使用数量化理论开展选择工作。当高压断路 OPI 高压断路监测装置工作后,使用人员能及时发现不正常信号。如果出现故障,监测装置通过上位机传递相应的信息,系统将发出的故障信息进行相关部件的在线诊断,并将诊断结论发送到监控的计算机上,从而达到实时监测的目的。          4. 断路机械故障监测系统管理措施分析          4.1 加强对断路故障的维护管理          导致断路出现故障的原因有很多,在故障发生后,必须第一时间展开维护,使得故障能得到有效处理,切不可出现故障扩大的状况。一般来说,环境因素对断路产生的影响是较大的,也是导致故障出现的主要原因。比方说,在出现机械卡顿时,若想使得断路得到有效的保护,则要立即对故障进行排除。具体来说,技术人员必须先将发生故障的具体位置位置予以确定,进而完成好清理工作。这里需要提醒的是,要针对导致卡顿出现的具体原因选择最为适合的清理材料。在完成清理工作后,还要对故障位置予以润滑处理,这样方可使得故障处理的质量有切实提升。          4.2 断路中气体的维护管理          断路器具有的作用主要是通过其中的气体实现的。断路投入使用一段时间后,其中的气体出现泄漏的情况是较为常见的,如果这个问题未能及时发现,那么断路所具有的使用寿命就会大幅缩短,而且还会对相关人员的安全产生危害。在确定出现泄漏后,相关人员必须和现场保持安全的距离,继而通过专业技术寻找到泄漏的具体位置,并通过可行的措施进行处理。对气体泄漏的进行分析可知,导致泄漏出现的原因是密封未能做到位,或是具体位置的焊接出现了问题。在展开维护管理的过程中,如果发现了泄漏,并将具体位置予以确定后,先要保证防护设备落实到位,相关人员能在安全状态下进入泄漏区域,进而高质量完成抢修工作。          4.3 断路的含水量的维护管理          若要使得断路所具有的作用真正发挥,密封、绝缘是必须予以保证的。当然,断路在使用一段时间后,其负荷必然会增大,这样一来,其中的含水量就会超出规定标准。当含水量加大时,气体的损耗会变得较大,断路所具有的作用也会变低,严重时还会导致断路损坏。断路器使用时必须将防水工作予以有效落实,可采用超高压干燥这种方法来降低水分比重。另外,在对完成维护管理工作的过程中,预防性管理必须重点关注,要定期对断路展开检测,了解水分、气体出现的变化,如果有问题,要立即予以解决。此外,还要对相关的元器件展开检测,了解其实际性能,如果未达标准,则要予以更换,这样方可使得断路所具有的性能充分发挥出来。          4.4 防止操作机构故障          各运行、维护单位应根据可能出现的系统最大运行方式及可能采用的各种运行方式,每年定期核算开关设备开断的短路电流,并采取以下机构反事故措施 :(1) 保证机构箱内加热、温控、除湿良好,使机构箱在潮湿季节或气温突变时保持干燥和恒温。 (2) 经常注意监视机构压力及油位,发现油位过低或渗漏油时应及时处理。 (3) 为保持液压油的清洁,防止漏压,在运行中每隔 2 年将油过滤一次。阀体解体检修必须在室内,并用海绵控拭零部件。 (4) 持续关注气体压力对断路除定期进行预防性试验外,在季节交替时应增加检查和试验次数,及时发现因温度变化导致的密封不良情况。除关注压力表示数外,应定期对设备进行红外检漏及超声局放检测,确保时刻掌握设备运行工况。          5. 结语          综上所述,科学技术的创新发展为我国社会生产力的提高作出了巨大的贡献,而电气作为社会生产的要件,在科学技术的支撑下更是朝着科技化、现代化方向发展。高压断路是维护和管控电网安全运行的重要基础性设备之一,高压断路的存在对电网的正常运行起着十分重要的作用。          参考文献:          [ 1 ]苏涛 . 高压断路现场维护与检修 [J]. 中国电气 ,2012 年 1 月 1 日 .          [ 2 ]刘黎 . 直流断路运维检修技术 [J]. 中国电气 ,2019 年 1 月 .          [ 3 ]陈仰东 .110kV 线路 SF6 断路的检修和维护 [J]. 科技风 ,2012.13 : 136.           [4] 邢鸿扬 . 进行变电检修思路中的 SF6 断路的维护探索 [J]. 电子技术与软件工程 ,2014,4(15):24-25.          [5] 何庆广 . 发电厂电气检修中 SF6 断路的特点及维护措施分析 [J]. 企业技术开发 ,2014,9(16):82-84.

  • 标签: