学科分类
/ 9
166 个结果
  • 简介:研究石墨烯微片(GNPs)的添加对AZ31镁合金纳米颗粒增强活性钨极氩弧焊(NSA-TIG)焊接接头显微组织及力学性能的影响。结果表明,与活性化焊接(A-TIG)相比,NSA-TIG接头熔合区的α-Mg晶粒明显细化,且活性剂为TiO2+GNPs的接头融合区的α-Mg粒径最小。此外,与涂覆TiO2+SiCp活性剂的接头相比,涂覆TiO2+GNPs活性剂接头的熔深并没有明显的变化,但其力学性能(显微硬度和极限拉伸强度)都明显提高。且涂覆GNPs后接头在拉伸时出现了颈缩现象。

  • 标签: 石墨烯微片 纳米颗粒增强活性钨极氩弧焊 AZ31镁合金 显微组织 力学性能
  • 简介:采用动电位和电化学阻抗谱技术研究了纯Ti(2级)和Ti-Pd合金(7级)的耐腐蚀性能。实验温度为36.6℃,实验溶液包括模拟的健康人体条件的pH7.4的PBS溶液和添加了H2O2(0.015mol/L)的pH5.2的炎症状态的PBS溶液。Ti-Pd合金(7级Ti),在含H2O2的PBS溶液中,其耐腐蚀性能比纯Ti的好(较低的腐蚀电流密度),表明其是一种很好的骨科植入材料。

  • 标签: TI Ti-Pd合金 生物材料 腐蚀 炎症 电化学阻抗谱
  • 简介:以CO为还原剂,进行中试规模的TiO2氯化。在CO和Cl2存在的条件下,对半连续流化床反应中的TiO2氯化过程进行实验分析和模拟。通过测量TiCl4生成量随时间的变化,连续监测氯化过程。系统研究氯化温度、原料粒径和粒度分布、原料量、Cl2和CO流速等操作参数对转化率的影响。逐渐升高氯化温度导致转化率单调上升。随着原料粒度的增大,转化率降低,负载量的增加导致反应转化率下降。提出一个预测反应过程中转化率、粒径分布和气相组分摩尔分数的模型。在不同的操作条件下,模型预测的转化率与实验数据吻合良好。

  • 标签: 氯化 TICL4 模拟 粒度分布 转化
  • 简介:采用溶胶-凝胶法,添加不同比例的Li3PO4助熔剂,合成Li1.3Al0.3Ti1.7(PO4)3锂离子固体电解质烧结片,采用X射线衍射、扫描电子显微镜研究合成产物的结构与形貌,采用循环伏安及交流阻抗技术研究添加不同摩尔分数的Li1.3Al0.3Ti1.7(PO4)3固体电解质烧结片的结构、氧化-还原电位、离子电导率和活化能。结果表明:添加与未添加Li3PO4助熔剂的Li1.3Al0.3Ti1.7(PO4)3烧结片具有相似的X射线衍射结果。添加Li3PO4的Li1.3Al0.3Ti1.7(PO4)3烧结片的空隙率较小,更为致密。添加Li3PO4对Li1.3Al0.3Ti1.7(PO4)3的氧化-还原电位影响不大。在所有添加Li3PO4助熔剂的Li1.3Al0.3Ti1.7(PO4)3烧结片中,添加1%(摩尔分数)Li3PO4的烧结片具有最高的离子电导率6.15×10-4S/cm和最低的活化能0.3142eV。

  • 标签: 溶胶-凝胶 电解质 离子电导
  • 简介:采用丝印法在铝基板上制备具有低室温电阻率、适中热敏常数的负温度系数BaCo0.02ⅡCo0.04ⅢBi0.94O3/Ba0.5Bi0.5Fe0.9Sn0.1O3复合热敏厚膜。采用数字多用表、吉时利2400和阻抗分析仪对热敏厚膜的电学性能进行表征。结果表明:随着Ba0.5Bi0.5Fe0.9Sn0.1O3含量从0.05增加至0.25,厚膜的室温电阻率、热敏常数和峰值电压均有所增加且分别处于1.47-26.5Ω·cm、678-1345K和18.9-47.0V范围内,厚膜峰值电压对应的电流也有所降低且处于40-240mA范围。阻抗谱测试表明,这些热敏厚膜表现出非正常的异质电学微结构行为,由高阻态的晶粒和较低电阻态的晶界区域构成。由此可知,在BaCo0.02ⅡCo0.04ⅢBi0.94O3中添加Ba0.5Bi0.5Fe0.9Sn0.1O3改善了热敏行为但也恶化了电流特征.

  • 标签: 负温度系数热敏厚膜 BaCo0.02 ⅡCo0.04ⅢBi0.94O3 Ba0.5Bi0.5Fe0.9Sn0.1O3 电学性能
  • 简介:采用沉淀和水热合成方法制备还原氧化石墨烯负载氧化钴纳米催化剂.采用XRD、Raman光源、SEM、TEM、氮气吸附、UV-Vis、XPS和H2-TPR等测试手段对所合成的催化剂进行表征.结果表明:颗粒尺寸均一的钴氧化物纳米颗粒均匀地分散在还原氧化石墨烯表面,所合成的材料具有较大的比表面积和均一的孔径分布.采用连续流动固定床微反-色谱装置对所合成的杂化催化剂对一氧化碳氧化的催化性能进行研究后发现,含还原氧化石墨烯质量分数为30%的催化剂具有最高的催化活性,能实现一氧化碳在100℃时的完全氧化.

  • 标签: 还原氧化石墨烯 氧化钴 催化剂 一氧化碳氧化 催化性能