学科分类
/ 1
2 个结果
  • 简介:AbstractWe analyzed variations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during a flight-related cluster outbreak of coronavirus disease 2019 (COVID-19) in Shenzhen, China, to explore the characteristics of SARS-CoV-2 transmission and intra-host single nucleotide variations (iSNVs) in a confined space. Thirty-three patients with COVID-19 were sampled, and 14 were resampled 3-31 days later. All 47 nasopharyngeal swabs were deep-sequenced. iSNVs and similarities in the consensus genome sequence were analyzed. Three SARS-CoV-2 variants of concern, Delta (n = 31), Beta (n = 1), and C.1.2 (n = 1), were detected among the 33 patients. The viral genome sequences from 30 Delta-positive patients had similar SNVs; 14 of these patients provided two successive samples. Overall, the 47 sequenced genomes contained 164 iSNVs. Of the 14 paired (successive) samples, the second samples (T2) contained more iSNVs (median: 3; 95% confidence interval [95% CI]: 2.77-10.22) than did the first samples (T1; median: 2; 95% CI: 1.63-3.74; Wilcoxon test, P = 0.021). 38 iSNVs were detected in T1 samples, and only seven were also detectable in T2 samples. Notably, T2 samples from two of the 14 paired samples had additional mutations than the T1 samples. The iSNVs of the SARS-CoV-2 genome exhibited rapid dynamic changes during a flight-related cluster outbreak event. Intra-host diversity increased gradually with time, and new site mutations occurred in vivo without a population transmission bottleneck. Therefore, we could not determine the generational relationship from the mutation site changes alone.

  • 标签: SARS-CoV-2 Cluster epidemic Intra-host single nucleotide variation
  • 简介:AbstractThe pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.

  • 标签: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mutation Variants of concern Variants of interest Adaptive evolution