学科分类
/ 1
9 个结果
  • 简介:是一项以较低的成本制造高性能铁基粉末冶金零部件的新型成形技术.实验发现,颗粒重排是温压过程的主导致密化机理,而为颗粒重排提供协调性的塑性变形是另一重要的致密化机理.作者分析了影响这2个致密化机理的主要因素.在此基础上,提出了温粉末原料的设计原则,并成功设计了高性能、低成本合金钢粉末的3大体系温粉末原料.

  • 标签: 致密化机理 颗粒重排列 塑性变形 温压
  • 简介:采用离散元分析软件PFC-2D对纯钼粉末材料的单道次等径角挤压过程从细观角度进行数值模拟,获得其变形过程中载荷、颗粒和孔隙的变化规律。模拟结果表明,等径角挤压对粉末材料具有强烈的致密化作用,且整个变形过程可以分为4个阶段:颗粒重排、初始变形、过渡变形和稳定变形。分析认为,冲头压力首先使颗粒重排减少大孔隙,之后,由于压力增大使小孔隙闭合,剪切作用使颗粒和孔隙发生变形,结合强大的静水压力使材料致密。在400℃条件下的纯钼粉末黄铜包单道次挤压实验结果与模拟结果具有较好的一致性,验证了所建离散元模型的可靠性。

  • 标签: 离散元数值模拟 钼粉材料 等径角挤压 颗粒和孔隙变形
  • 简介:采用等离子旋转电极雾化工艺制备名义成分为Ti-47Al-2Cr-2Nb-0.2W(原子分数,%)的预合金粉末,并经热等静压致密化得到TiAl基合金坯料。对热等静压坯体进行包锻造,始锻温度为1150~1200℃,并控制应变速率为0.1~0.01s-1,研究包锻造后TiAl基合金的高温力学性能。结果表明,包锻造后组织得到了一定程度的细化和均匀化,从而使合金的高温力学性能得到提高,但由于显微组织中有少量微裂纹存在,导致包锻造TiAl基合金仍呈现较低的伸长率。TiAl基合金在进行高温拉伸时,首先在试样内部形成微裂纹或微孔,随拉伸过程的进行微裂纹或微孔扩展、连通,最终使试样断裂。

  • 标签: TIAL基合金 热等静压 包套锻造 高温力学性能
  • 简介:与通常采用纯雾化铁粉和部分合金化铁粉作为温基粉不同,作者对水雾化Fe-Ni-Mo合金钢粉作基粉的Fe-1.5Ni-0.5Mo-1.0Cu-xC(x=0.6,0.8,1.0)粉末进行了温与烧结行为的研究.结果表明,通过设计新型聚合物润滑剂,高硬度的合金钢粉仍适用于温工艺.当粉末和模具的加热温度分别为125和145℃时,Fe-1.5Ni-0.5Mo-1.0Cu-0.8C的温密度较高.在735MPa的压力下进行压制,坯密度达到7.35g/cm3,比室温压制提高了0.19g/cm3左右.并且,温压压坯的弹性后效比室温压制降低了40%,在1120℃烧结1h后的烧结密度为7.32g/cm3.

  • 标签: 水雾化Fe-Ni-Mo合金钢粉 温压 烧结
  • 简介:通过热重分析(TGA)研究TiH2粉末粒度对其脱氢温度及脱氢量的影响,采用热膨胀仪研究粉末粒度对TiH2坯收缩率的影响,同时利用真空烧结炉研究成形压力和温度对TiH2坯烧结脱氢的影响。结果表明:TiH2粉末粒度越细,起始脱氢的温度越低;与粒度约为45μm的原料TiH2粉相比,经过球磨的粉末脱氢量减小;球磨30min后的TiH2粉末坯,烧结线收缩率和收缩速率都显著增大;原始TiH2粉末坯和球磨30min后粉末坯的最大收缩率分别为5%和9.5%,最大收缩速率分别为2.4×10-4和7.30×10-4μm/℃;成形压力越大,TiH2坯脱氢峰值温度越高,650℃保温1h,TiH2坯失重率达到3.572%(理论含氢量为4.01%)。

  • 标签: 氢化钛 脱氢 粉末冶金
  • 简介:研究了热等静压时间对TiAl合金有关特性的影响.在其它条件不变的情况下,10min保温保后,TiAl合金的密度已经达到3.46g/cm3.时间从10min逐渐增加到70min,所得TiAl合金的密度有所增加,但增加不明显,所得TiAl合金是一种非稳定状态,时间的延长对物相的影响不大.同时随着时间的延长,TiAl合金内部产生了微裂纹.1380℃,保温1h热处理后,合金内部的微裂纹消失,物相组成也转变成稳定的TiAl相.

  • 标签: 热等静压 时间 TIAL合金
  • 简介:研究了具有典型硬脆粉特性的93W-5Ni-2Cu和93W-4.9Ni-2.1Fe在不同温度下的温成形行为.结果表明:与常温成形相比,温能明显地提高压坯密度,在150℃时W-Ni-Fe和W-Ni-Cu坯密度分别提高0.26,0.97g·cm-3;温成形能显著降低压坯的弹性后效;由于未加任何润滑剂,2种粉体坯的脱模力均高于普通压制;W-Ni-Cu粉在相同载荷作用下,温压条件下的位移大于常温下的位移;坯经烧结后,温坯件的径向收缩小于常温坯件的径向收缩;温可以改善钨基高密度合金的显微组织.

  • 标签: 钨基高密度合金 温压 硬脆粉
  • 简介:高比重合金由于具有密度和强度高、延性好等一系列优异的性能,在军工上被用作动能穿甲弹材料.纳米材料被认为是21世纪应用前景最为广阔的新型材料.采用纳米粉末可望大大细化钨合金晶粒,显著提高合金的强度、延性和硬度等力学性能,因而是制备新型高强韧、高比重钨合金的一个很重要的研究方向.作者采用机械合金化(MA)工艺制备了纳米晶钨合金复合粉末,研究了纳米晶钨合金粉末在常氢气气氛中的烧结致密化和在烧结过程中的钨晶粒长大行为.研究结果表明,MA纳米晶粉末促进了致密化,使致密化温度降低约100~200℃.在一般固相烧结温度时可以得到晶粒尺寸为3~5μm的细晶高强度合金.同时,指出了在液相烧结时存在的问题,即钨晶粒加速重排、产生晶粒聚集与合并,迅速发生钨晶粒长大,在较短时间内液相烧结时,钨晶粒尺寸又长大到接近传统高比重合金水平.

  • 标签: 钨合金 致密化 纳米 晶粒长大
  • 简介:采用粉末冶金方法在常H2气氛下制备W-TiC合金,研究W-TiC合金的烧结致密化行为,并对合金的性能和组织结构进行分析。结果表明:添加微量强化烧结元素可改善W-TiC合金的烧结活性,在1700℃烧结120min后其相对密度达到99.2%;随着烧结温度的升高,W-TiC合金的拉伸强度提高,在2000℃烧结120min后,拉伸强度达到464MPa;TiC颗粒可有效地抑制合金烧结过程中的晶粒长大。

  • 标签: W-TiC合金 致密化行为 微观组织 力学性能