学科分类
/ 1
9 个结果
  • 简介:目的:分析血清中酞酸酯类浓度与肾透析的相关性,探究肾透析患者体内酞酸酯类的暴露情况.方法:从2013年6月至2015年6月期间我院内科透析室接收并治疗的肾透析患者中随机性抽取100例进行回顾性分析,探究其钛酸酯类浓度跟肾透析的关系.结果:每次透析时长为2h,3h和4h所测得的酞酸丁酯(DBP)浓度分别为(1.05±0.13)x103ug/L、(1.06±0.12)x103ug/L和(1.05±0.11)x103ug/L,组间比较无显著差异(p〉0.05);每次透析时长为2h,3h和4h所测得的酞酸辛酯(DEHP)中位浓度分别为(3.35±0.06)x103ug/L、(5.05±0.01)x103ug/L和(4.65±0.23)x103ug/L,组间比较存在显著差异(p〈0.05),具有统计学差异.结论:肾透析患者体内酞酸酯类主要有酞酸丁酯(DBP)和酞酸辛酯(DEHP),其中酞酸辛酯(DEHP)浓度与肾透析每次的时长存在相关性.

  • 标签: 血清中 酞酸酯类浓度 肾透析 相关性
  • 简介:拟除虫菊酯类农药是一类高效、广谱农药,且具有低毒性和能被生物降解之特性,但其残留却给人们的健康带来了巨大的威胁,如何有效地去除其残留成为摆在环境工作者面前的一项重大课题。以生物修复为理论基础的农药残留降解菌技术为解决这一难题带来了新思路,该方法操作简便、经济实用,在国内外均成为环境工作者的研究热点。

  • 标签: 生物修复 拟除虫菊酯 微生物 生物降解
  • 简介:大环内酯类抗生素基因工程是近年来生物工程领域研究的一个热点,利用基因工程改造大环内酯类抗生素合成基因,已经合成了100多种"非天然”的天然化合物,为筛选新抗生素开辟了新的途径.本研究以糖多孢红霉菌A226基因组DNA为模板,先用PCR扩增出红霉素合成基因eryKR6两侧片段,再用重叠PCR将其拼接成去除KR6的约3.2kbDNA片段,并克隆于pWHM3载体,构建了同源重组质粒pWHM2201.用PEG介导将pWHM2201转入糖多孢红霉菌A226原生质体.PCR鉴定和生物活性检测均显示pWHM2201已重组到红霉素合成基因位点.在无抗性R3M斜面上生长两代后,制备重组体原生质体,并涂R3M平皿.利用PCR筛选出KR6敲除的突变体糖多孢红霉菌M.

  • 标签: 酮内酯类化合物 3-去氧-3-羰基-红霉内酯B 基因工程 合成
  • 简介:代生物燃料指的是以麦秆、稻草和木屑等农林废弃物或藻类、纸浆废液为主要原料,使用纤维素酶或其他发酵手段将其转化为生物乙醇或生物柴油的模式。第代生物燃料与第一代最重要的区别在于其不再以粮食作物为原料,从而最大限度地降低了对食品供应的威胁。第代生物燃料不仅有助于减少对传统化石能源的依赖,也能减少温室气体的排放,对实现全球可持续性发展具有重要作用。许多国家都制定了或是正在执行相关计划,大力发展第代生物燃料。全球知名增长咨询公司Frost&Sullivan(弗若斯特沙利文)

  • 标签: 前景分析 燃料前景 生物燃料
  • 简介:2007年9月28日,在《Science》国际顶级学术期刊的网站上,同时查询到3篇突破性的基础研究成果。这三篇文章的研究对象和领域完全不同,分别涉及了对人类基因组变异的研究,蜜蜂社会性的进化讨论以及灭绝的古生物线粒体全序列的测定。然而共同的一点是,这三篇文章使用的分析数据和实验结果都来自罗氏454公司研发的高通量测序技术平台GenomeSequencer-TM。在1周的时间里就有3篇GS系统在不同研究领域的文章发表在《Science》上,由此累计已有近100篇GenomeSequencer-TM的应用成果发表在《Nature》,《Science》,

  • 标签: 基因组测序 高通量 《SCIENCE》 系统 第二代 《NATURE》
  • 简介:目的:用生物信息学方法对沙丘芦苇胸腺嘧啶磷酸葡萄糖脱水酶(PcTGD)的序列进行分析与结构预测,为后续研究提供参考。方法:以GOR法预测了PcTGD的级结构,以ProtScale分析它的疏水性,最终通过现有的序列同源性比较,用MODELLER预测了PcTGD的三维结构。结果:PcTGD具有高度保守的活性中心Tyr***Lys和N末端的Gly*Gly**Gly的高度保守结构。结论:PcTGD属于一个短链脱氢酶/还原酶家族。

  • 标签: 疏水性 短链脱氢酶/还原酶 二级结构 沙丘芦苇胸腺嘧啶二磷酸葡萄糖脱水酶
  • 简介:利用传统黑板教学方法与应用多媒体仿真软件教学对比,得出多媒体教学的优越性与一般实验的可替代性的结论。

  • 标签: 多媒体 仿真软件 实验
  • 简介:现代农业已经发展到了“分子农业”时代,基因工程、转基因技术等分子生物学手段广泛应用于植物的遗传育种,基因组学的研究成为植物基因资源发掘的基本科学平台,分子育种成为植物育种的最主要手段之一。为加强与国际植物分子育种领域的合作与交流,推动应用基因与组学植物分子育种科学的发展,TheGenerationChallengeProgramme(全球挑战计划)、

  • 标签: 植物育种 分子育种 国际学术研讨会 三亚市 海南省 基因工程