学科分类
/ 1
6 个结果
  • 简介:采用粉末冶金法制备95W-5(Ni/Fe)合金,研究合金的力学性能,并通过扫描电镜(SEM)观察其延性断裂和脆性断裂的断口形貌。结果表明,合金有2种断裂形式,当粘结相与W颗粒界面结合良好时,发生粘结相的延性断裂和W颗粒的穿晶解理断裂,合金的强度和韧性都很高,冲击韧性、抗拉强度和伸长率分别达到29J/cm2、883MPa和10%;而粘结相与W颗粒界面结合较差,粘结相不能完全填充于W颗粒之间时,合金表现为脆性,其冲击韧性和抗拉强度分别为4.69J/cm2和596MPa,断裂前不出现塑性变形。对烧结后的95W-5(Ni/Fe)脆性合金在马弗炉内进行热处理(热处理温度为1150~1280℃,用氩气作保护气氛,保温时间0.5~2h)后,由于改变了W颗粒与粘结相之间的界面结合状态,合金断裂行为转变为延性断裂,力学性能大幅度提高。

  • 标签: 高密度钨合金 力学性能 显微组织
  • 简介:紧耦合气雾化制粉过程中,当雾化气压超过某一临界值时,直管环缝型喷嘴的气雾化场结构存在"开涡—闭涡"突变现象,雾化效果随之发生显著改变。该文采用数值模拟方法研究紧耦合喷嘴气体场中开涡和闭涡结构特征及其突变行为,以及雾化介质类型和喷嘴几何结构参数(喷射顶角、导液管伸出长度和末端直径、环缝宽度)对临界雾化压力Pc的影响。结果表明:当雾化压力P略高于Pc时,马赫盘迅速截断回流区,场结构由开涡向闭涡突变,并引起喷嘴熔体出口下方抽吸压力Pa骤降,突变前后抽吸压力差ΔPa约为30kPa;雾化介质类型和喷嘴主要几何结构参数对Pc有显著影响,但对ΔPa无明显影响。

  • 标签: 紧耦合气雾化 突变 流场结构 数值模拟
  • 简介:雾化喷嘴是喷射成形技术的关键部件,为验证喷嘴结构对雾化性能的影响,采用计算流体动力学方法研究不同Laval喷管喉口结构、导流管锥顶角和突出长度对喷射气体场及导流管顶端静压强(ΔP)的影响规律。结果表明在设计紧耦合Laval喷嘴中:圆角过渡式喉口形状比尖角及柱体过渡更利于获得高速气流;较小的锥顶角可以减小导流管出口静压值,但速度衰减较大;导流管突出长度在7~8mm时可以获得较好的气动效果。最后选定圆角过渡Laval形出气口形状,导流管锥顶角β=45°以及突出长度h=8mm加工雾化喷嘴并进行雾化实验,在雾化压强0.8MPa时7055合金粉末以球状或类球状形态存在,质量中径为42.3μm。

  • 标签: Laval管 导流管突出长度 锥顶角 抽吸压强
  • 简介:采用真空无压熔渗工艺制备炭纤维整体织物炭/炭-铜(C/C—Cu)复合材料,在改装的QDM150型干式摩擦性能试验机上进行载条件下的干滑动模拟实验,研究电流及紫铜对偶盘转速对C/C—Cu复合材料摩擦磨损性能的影响规律。利用扫描电镜观察分析磨损表面及磨屑形貌。结果表明:C/C—Cu复合材料的摩擦因数随电流增大而减小,质量磨损率随电流增大而增大,接触表面的化学反应使得正极的磨损大于负极;复合材料的摩擦因数和磨损率均随着转速增大而降低。扫描电镜观察分析发现正极生成的磨屑主要以片状剥落层的形式存在,而负极的磨屑细小松散,呈等轴状。

  • 标签: C/C—Cu复合材料 电流强度 摩擦磨损
  • 简介:采用CFD(computationalfluiddynamics,计算流体力学)软件系统研究超音速气雾化喷嘴两相的雾化过程。利用VOF(volumeoffluid,流体体积)函数两相模型模拟验证金属液不同质量率下的2种初级破碎模式,并研究雾化压力和液体表面张力对金属液初级破碎过程的影响。模拟结果表明:金属液质量率较小(0.053kg/s)时,初级破碎模式为液膜破碎,金属液质量率较大(0.265kg/s)时,初级破碎模式为“微型喷泉”破碎;随雾化压力从0.5MPa增加到1.5MPa,初级破碎程度加剧,但雾化压力过高反而会削弱雾化效果;将金属液表面张力由1.2N/m降至0.4N/m,初级破碎时能够获得尺寸更细小的液滴,通过随后的二次破碎形成更加均匀细小的液滴,从而获得高质量的沉积锭。

  • 标签: 喷射成形 CFD 超音速喷嘴 两相流 破碎机制
  • 简介:采用粉末微注射成形技术制得ZrO2阵列式微道,研究粉末粒径和注射成形工艺对微道性能的影响规律。结果表明:通过优化注射工艺参数可以有效避免注射坯中缺陷的产生;不同粉末粒径的试样烧结后,致密度和力学性能均随烧结温度的升高先增大后减小;中位粒径为200nm粉末粒径的试样最佳烧结温度为1500℃,致密度为99.5%;中位粒径为100nm粉末粒径的试样最佳烧结温度为1250℃,致密度为98.4%,均近完全致密。纳米级粉末的使用可有效降低烧结温度、提高力学性能;粉末粒径从200nm下降到100nm时,粗糙度值从1.92下降到1.32。烧结后的阵列式微道的直径为(450±5)μm,具有很好的圆度,尺寸误差<1.5%。

  • 标签: 粉末微注射成形 微流道 微观组织 力学性能