学科分类
/ 1
1 个结果
  • 简介:针对短期家庭电力数据随机性强,数据维度低等问题,提出了一种基于长短期记忆循环神经网络(LSTM)的单变量短期家庭电力需求预测模型.实验表明,该模型能够准确反映以小时为单位的家庭电力需求趋势,且在不同家庭上的泛化性能优于传统的循环神经网络(RNN)和门控循环网络(GRU).

  • 标签: 短期家庭电力需求预测 单变量 长短期记忆循环神经网络 深度学习