学科分类
/ 1
4 个结果
  • 简介:为了解决乘波偏离设计条件下气动特性会恶化,特别在低速时,升力严重不足这个问题,提出了通过增大后掠角生成前缘涡,增加背风面的升力,以改善乘波低速气动性能.首先使用VisualBasic编程语言,并通过CATIA软件二次开发技术,实现了锥导乘波的参数设计和自动生成.再通过控制圆锥角和流场长度这两个设计参数,获得了大后掠乘波构型.最后,运用剪切应力输运(shear-stress-transport,SST)模型,计算了所得乘波的气动特性,并分析了流场变化,发现乘波在设计状态下激波能很好附着在前缘上,在小的正攻角下,乘波可获得比设计状态更高的升阻比,满足巡航要求.运用I.模型计算了乘波的低速气动特性,得到了不同攻角下升力、阻力和升阻比的变化规律.研究结果发现,乘波在低速下产生了明显的涡结构,在合适攻角下,能产生数量可观的附加升力,提高了乘波的水平起降性能.

  • 标签: 高超声速 气动特性 宽速域 乘波体 涡升力
  • 简介:采用放电测量和光学诊断技术对三电极等离子合成射流激励器电特性及流场特性进行了实验研究,分析了放电电容、激励器腔体体积和射流出口直径对三电极等离子合成射流流场分布及速度特性的影响.实验结果表明:三电极等离子合成射流激励器放电过程包含触发、放电增强、放电衰减和电弧熄灭四个阶段,表现出典型的欠阻尼放电特征;等离子合成射流流场包含射流主流、前驱激波和复杂的反射波系.放电电容、腔体体积和射流出口直径均存在阈值,当电容和出口直径小于阈值、腔体体积大于阈值时,前驱激波以当地声速(约345m/s)恒速传播,否则前驱激波则以大于345m/s的速度传播,且与射流速度呈现相同的变化趋势,即随着放电电容和出口直径的增加而增大,随着腔体体积的增加而减小.

  • 标签: 三电极激励器 等离子体合成射流 前驱激波 射流速度 实验研究
  • 简介:等离子合成射流控制技术因其具有不需要外部气源,工作频带宽,射流速度高,射流净质量通量为零,低功耗,激励器形式多样,环境适应性强等特点,成为了目前针对高速流场主动流动控制技术中应用潜能大、有望实现实际工程应用突破的流动控制装置.传统的等离子激励器的出口多为垂直于流向或与流向成定夹角,故垂直于流向的动量分量会对激励器的流动控制能力产生影响.为增强流向动量注入能力,拟设计种新型的水平动量注入型等离子合成射流激励器.本文主要内容有:采用外部电路电参数测量与高速纹影技术,对激励器常压下单周期工作特性与重频工作特性进行了初步研究.对水平动量注入型等离子合成射流激励器的射流结构进行分析,探究该激励器工作频率对射流流场的流场特性与控制能力的影响.最后在高速纹影测量的基础上,开展了激励器高频工作时均出口动压的研究.实验表明:水平动量注入型激励器单周期射流初始速度达到220m/s单周期激波初始速度达到477m/s.此外,工作频率对于激励器的影响主要体现在对激励器控制范围的影响,当激励器工作频率增高时,在相同位置时激励器的动压输入能力下降.

  • 标签: 等离子体合成射流 水平动量输入 高速纹影 动压测量 高频放电
  • 简介:研究翼型绕流的转捩预测方法,对于翼型流动细节的精确模拟和气动力的准确计算以及精细化设计均具有十分重要的意义.采用动模态分解(dynamicmodedecomposition,DMD)代替线性稳定性理论(linearstabilitytheory,LST)与e^N方法结合,不需要求解稳定性方程,成为种数据驱动的翼型边界层转捩预测新方法,称为DMD/e^N方法.在原有方法的基础上,改进了DMD网格线生成方法和扰动放大N因子的积分策略,并将RANS求解器与改进的DMD/e^N方法进行耦合,实现了翼型定常绕流转捩预测自动.采用该方法对LSC72613跨声速自然层流翼型以及NLF0416低速自然层流翼型在不同攻角下的绕流进行转捩预测,转捩点计算结果均与实验值和LST/e^N方法吻合良好.该方法计算得到的N值增长曲线与LST/e^N方法的包络线也较为吻合,进步验证了积分策略的正确性.改进的DMD/e^N方法可作为自然层流翼型设计的新的有力工具.

  • 标签: 转捩预测 动模态分解 e^N方法 翼型